Cargando…
Machine Learning Prediction of Crossbred Pig Feed Efficiency and Growth Rate From Single Nucleotide Polymorphisms
This research assessed the ability of a Support Vector Machine (SVM) regression model to predict pig crossbred (CB) performance from various sources of phenotypic and genotypic information for improving crossbreeding performance at reduced genotyping cost. Data consisted of average daily gain (ADG)...
Autores principales: | Tusell, Llibertat, Bergsma, Rob, Gilbert, Hélène, Gianola, Daniel, Piles, Miriam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775539/ https://www.ncbi.nlm.nih.gov/pubmed/33391339 http://dx.doi.org/10.3389/fgene.2020.567818 |
Ejemplares similares
-
Feature Selection Stability and Accuracy of Prediction Models for Genomic Prediction of Residual Feed Intake in Pigs Using Machine Learning
por: Piles, Miriam, et al.
Publicado: (2021) -
Genic and non-genic SNP contributions to additive and dominance genetic effects in purebred and crossbred pig traits
por: Mohammadpanah, Mahshid, et al.
Publicado: (2022) -
Purebred and Crossbred Genomic Evaluation and Mate Allocation Strategies To Exploit Dominance in Pig Crossbreeding Schemes
por: González-Diéguez, David, et al.
Publicado: (2020) -
Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle
por: Abo-Ismail, Mohammed K, et al.
Publicado: (2014) -
Pedigree and genomic evaluation of pigs using a terminal-cross model
por: Tusell, Llibertat, et al.
Publicado: (2016)