Cargando…

Highly Efficient Antimicrobial and Antifouling Surface Coatings with Triclosan-Loaded Nanogels

[Image: see text] Multifunctional nanogel coatings provide a promising antimicrobial strategy against biomedical implant-associated infections. Nanogels can create a hydrated surface layer to promote antifouling properties effectively. Further modification of nanogels with quaternary ammonium compou...

Descripción completa

Detalles Bibliográficos
Autores principales: Keskin, Damla, Tromp, Lisa, Mergel, Olga, Zu, Guangyue, Warszawik, Eliza, van der Mei, Henny C., van Rijn, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775744/
https://www.ncbi.nlm.nih.gov/pubmed/33320528
http://dx.doi.org/10.1021/acsami.0c18172
Descripción
Sumario:[Image: see text] Multifunctional nanogel coatings provide a promising antimicrobial strategy against biomedical implant-associated infections. Nanogels can create a hydrated surface layer to promote antifouling properties effectively. Further modification of nanogels with quaternary ammonium compounds (QACs) potentiates antimicrobial activity owing to their positive charges along with the presence of a membrane-intercalating alkyl chain. This study effectively demonstrates that poly(N-isopropylacrylamide-co-N-[3(dimethylamino)propyl]methacrylamide) (P(NIPAM-co-DMAPMA)-based nanogel coatings possess antifouling behavior against S. aureus ATCC 12600, a Gram-positive bacterium. Through the tertiary amine in the DMAPMA comonomer, nanogels are quaternized with a 1-bromo-dodecane chain via an N-alkylation reaction. The alkylation introduces the antibacterial activity due to the bacterial membrane binding and the intercalating ability of the aliphatic QAC. Subsequently, the quaternized nanogels enable the formation of intraparticle hydrophobic domains because of intraparticle hydrophobic interactions of the aliphatic chains allowing for Triclosan incorporation. The coating with Triclosan-loaded nanogels shows a killing efficacy of up to 99.99% of adhering bacteria on the surface compared to nonquaternized nanogel coatings while still possessing an antifouling activity. This powerful multifunctional coating for combating biomaterial-associated infection is envisioned to greatly impact the design approaches for future clinically applied coatings.