Cargando…
Network machine learning maps phytochemically rich “Hyperfoods” to fight COVID-19
In this paper, we introduce a network machine learning method to identify potential bioactive anti-COVID-19 molecules in foods based on their capacity to target the SARS-CoV-2-host gene-gene (protein-protein) interactome. Our analyses were performed using a supercomputing DreamLab App platform, harn...
Autores principales: | Laponogov, Ivan, Gonzalez, Guadalupe, Shepherd, Madelen, Qureshi, Ahad, Veselkov, Dennis, Charkoftaki, Georgia, Vasiliou, Vasilis, Youssef, Jozef, Mirnezami, Reza, Bronstein, Michael, Veselkov, Kirill |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775839/ https://www.ncbi.nlm.nih.gov/pubmed/33386081 http://dx.doi.org/10.1186/s40246-020-00297-x |
Ejemplares similares
-
Predicting anticancer hyperfoods with graph convolutional networks
por: Gonzalez, Guadalupe, et al.
Publicado: (2021) -
HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods
por: Veselkov, Kirill, et al.
Publicado: (2019) -
Phytochemically rich dietary components and the risk of colorectal cancer: A systematic review and meta-analysis of observational studies
por: Borgas, Pia, et al.
Publicado: (2021) -
Genomic-driven nutritional interventions for radiotherapy-resistant rectal cancer patient
por: Southern, Joshua, et al.
Publicado: (2023) -
Alzheimer’s disease: using gene/protein network machine learning for molecule discovery in olive oil
por: Rita, Luís, et al.
Publicado: (2023)