Cargando…

Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons

Millimetre-wave (mmWave) technology continues to draw great interest due to its broad applications in wireless communications, radar, and spectroscopy. Compared to pure electronic solutions, photonic-based mmWave generation provides wide bandwidth, low power dissipation, and remoting through low-los...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Beichen, Morgan, Jesse S., Sun, Keye, Jahanbozorgi, Mandana, Yang, Zijiao, Woodson, Madison, Estrella, Steven, Beling, Andreas, Yi, Xu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775918/
https://www.ncbi.nlm.nih.gov/pubmed/33386388
http://dx.doi.org/10.1038/s41377-020-00445-x
Descripción
Sumario:Millimetre-wave (mmWave) technology continues to draw great interest due to its broad applications in wireless communications, radar, and spectroscopy. Compared to pure electronic solutions, photonic-based mmWave generation provides wide bandwidth, low power dissipation, and remoting through low-loss fibres. However, at high frequencies, two major challenges exist for the photonic system: the power roll-off of the photodiode, and the large signal linewidth derived directly from the lasers. Here, we demonstrate a new photonic mmWave platform combining integrated microresonator solitons and high-speed photodiodes to address the challenges in both power and coherence. The solitons, being inherently mode-locked, are measured to provide 5.8 dB additional gain through constructive interference among mmWave beatnotes, and the absolute mmWave power approaches the theoretical limit of conventional heterodyne detection at 100 GHz. In our free-running system, the soliton is capable of reducing the mmWave linewidth by two orders of magnitude from that of the pump laser. Our work leverages microresonator solitons and high-speed modified uni-traveling carrier photodiodes to provide a viable path to chip-scale, high-power, low-noise, high-frequency sources for mmWave applications.