Cargando…
EchoFakeD: improving fake news detection in social media with an efficient deep neural network
The increasing popularity of social media platforms has simplified the sharing of news articles that have led to the explosion in fake news. With the emergence of fake news at a very rapid rate, a serious concern has produced in our society because of enormous fake content dissemination. The quality...
Autores principales: | Kaliyar, Rohit Kumar, Goswami, Anurag, Narang, Pratik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7776294/ https://www.ncbi.nlm.nih.gov/pubmed/33424132 http://dx.doi.org/10.1007/s00521-020-05611-1 |
Ejemplares similares
-
FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
AENeT: an attention-enabled neural architecture for fake news detection using contextual features
por: Jain, Vidit, et al.
Publicado: (2021) -
“Fake Tan” or “Fake News”?
por: Meyer, Georg, et al.
Publicado: (2020) -
Fake news on Social Media: the Impact on Society
por: Olan, Femi, et al.
Publicado: (2022) -
Fake news and COVID-19: modelling the predictors of fake news sharing among social media users
por: Apuke, Oberiri Destiny, et al.
Publicado: (2021)