Cargando…
Exponential node clustering at singularities for rational approximation, quadrature, and PDEs
Rational approximations of functions with singularities can converge at a root-exponential rate if the poles are exponentially clustered. We begin by reviewing this effect in minimax, least-squares, and AAA approximations on intervals and complex domains, conformal mapping, and the numerical solutio...
Autores principales: | Trefethen, Lloyd N., Nakatsukasa, Yuji, Weideman, J. A. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7776296/ https://www.ncbi.nlm.nih.gov/pubmed/33424036 http://dx.doi.org/10.1007/s00211-020-01168-2 |
Ejemplares similares
-
Double exponential quadrature for fractional diffusion
por: Rieder, Alexander
Publicado: (2023) -
Locally-corrected multidimensional quadrature rules for singular functions
por: Strain, J A
Publicado: (1993) -
The method of intrinsic scaling: a systematic approach to regularity for degenerate and singular PDEs
por: Urbano, José Miguel
Publicado: (2008) -
Modeling and Solution of Reaction–Diffusion Equations by Using the Quadrature and Singular Convolution Methods
por: Ragb, O., et al.
Publicado: (2022) -
Exponential map at an isolated singular point
por: Stone, David A
Publicado: (1982)