Cargando…

Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis

Contact dermatitis tremendously impacts the quality of life of suffering patients. Currently, diagnostic regimes rely on allergy testing, exposure specification, and follow-up visits; however, distinguishing the clinical phenotype of irritant and allergic contact dermatitis remains challenging. Empl...

Descripción completa

Detalles Bibliográficos
Autores principales: Fortino, Vittorio, Wisgrill, Lukas, Werner, Paulina, Suomela, Sari, Linder, Nina, Jalonen, Erja, Suomalainen, Alina, Marwah, Veer, Kero, Mia, Pesonen, Maria, Lundin, Johan, Lauerma, Antti, Aalto-Korte, Kristiina, Greco, Dario, Alenius, Harri, Fyhrquist, Nanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7776829/
https://www.ncbi.nlm.nih.gov/pubmed/33318199
http://dx.doi.org/10.1073/pnas.2009192117
_version_ 1783630772507246592
author Fortino, Vittorio
Wisgrill, Lukas
Werner, Paulina
Suomela, Sari
Linder, Nina
Jalonen, Erja
Suomalainen, Alina
Marwah, Veer
Kero, Mia
Pesonen, Maria
Lundin, Johan
Lauerma, Antti
Aalto-Korte, Kristiina
Greco, Dario
Alenius, Harri
Fyhrquist, Nanna
author_facet Fortino, Vittorio
Wisgrill, Lukas
Werner, Paulina
Suomela, Sari
Linder, Nina
Jalonen, Erja
Suomalainen, Alina
Marwah, Veer
Kero, Mia
Pesonen, Maria
Lundin, Johan
Lauerma, Antti
Aalto-Korte, Kristiina
Greco, Dario
Alenius, Harri
Fyhrquist, Nanna
author_sort Fortino, Vittorio
collection PubMed
description Contact dermatitis tremendously impacts the quality of life of suffering patients. Currently, diagnostic regimes rely on allergy testing, exposure specification, and follow-up visits; however, distinguishing the clinical phenotype of irritant and allergic contact dermatitis remains challenging. Employing integrative transcriptomic analysis and machine-learning approaches, we aimed to decipher disease-related signature genes to find suitable sets of biomarkers. A total of 89 positive patch-test reaction biopsies against four contact allergens and two irritants were analyzed via microarray. Coexpression network analysis and Random Forest classification were used to discover potential biomarkers and selected biomarker models were validated in an independent patient group. Differential gene-expression analysis identified major gene-expression changes depending on the stimulus. Random Forest classification identified CD47, BATF, FASLG, RGS16, SYNPO, SELE, PTPN7, WARS, PRC1, EXO1, RRM2, PBK, RAD54L, KIFC1, SPC25, PKMYT, HISTH1A, TPX2, DLGAP5, TPX2, CH25H, and IL37 as potential biomarkers to distinguish allergic and irritant contact dermatitis in human skin. Validation experiments and prediction performances on external testing datasets demonstrated potential applicability of the identified biomarker models in the clinic. Capitalizing on this knowledge, novel diagnostic tools can be developed to guide clinical diagnosis of contact allergies.
format Online
Article
Text
id pubmed-7776829
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-77768292021-01-12 Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis Fortino, Vittorio Wisgrill, Lukas Werner, Paulina Suomela, Sari Linder, Nina Jalonen, Erja Suomalainen, Alina Marwah, Veer Kero, Mia Pesonen, Maria Lundin, Johan Lauerma, Antti Aalto-Korte, Kristiina Greco, Dario Alenius, Harri Fyhrquist, Nanna Proc Natl Acad Sci U S A Biological Sciences Contact dermatitis tremendously impacts the quality of life of suffering patients. Currently, diagnostic regimes rely on allergy testing, exposure specification, and follow-up visits; however, distinguishing the clinical phenotype of irritant and allergic contact dermatitis remains challenging. Employing integrative transcriptomic analysis and machine-learning approaches, we aimed to decipher disease-related signature genes to find suitable sets of biomarkers. A total of 89 positive patch-test reaction biopsies against four contact allergens and two irritants were analyzed via microarray. Coexpression network analysis and Random Forest classification were used to discover potential biomarkers and selected biomarker models were validated in an independent patient group. Differential gene-expression analysis identified major gene-expression changes depending on the stimulus. Random Forest classification identified CD47, BATF, FASLG, RGS16, SYNPO, SELE, PTPN7, WARS, PRC1, EXO1, RRM2, PBK, RAD54L, KIFC1, SPC25, PKMYT, HISTH1A, TPX2, DLGAP5, TPX2, CH25H, and IL37 as potential biomarkers to distinguish allergic and irritant contact dermatitis in human skin. Validation experiments and prediction performances on external testing datasets demonstrated potential applicability of the identified biomarker models in the clinic. Capitalizing on this knowledge, novel diagnostic tools can be developed to guide clinical diagnosis of contact allergies. National Academy of Sciences 2020-12-29 2020-12-14 /pmc/articles/PMC7776829/ /pubmed/33318199 http://dx.doi.org/10.1073/pnas.2009192117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Fortino, Vittorio
Wisgrill, Lukas
Werner, Paulina
Suomela, Sari
Linder, Nina
Jalonen, Erja
Suomalainen, Alina
Marwah, Veer
Kero, Mia
Pesonen, Maria
Lundin, Johan
Lauerma, Antti
Aalto-Korte, Kristiina
Greco, Dario
Alenius, Harri
Fyhrquist, Nanna
Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
title Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
title_full Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
title_fullStr Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
title_full_unstemmed Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
title_short Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
title_sort machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7776829/
https://www.ncbi.nlm.nih.gov/pubmed/33318199
http://dx.doi.org/10.1073/pnas.2009192117
work_keys_str_mv AT fortinovittorio machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT wisgrilllukas machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT wernerpaulina machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT suomelasari machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT lindernina machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT jalonenerja machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT suomalainenalina machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT marwahveer machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT keromia machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT pesonenmaria machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT lundinjohan machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT lauermaantti machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT aaltokortekristiina machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT grecodario machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT aleniusharri machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis
AT fyhrquistnanna machinelearningdrivenbiomarkerdiscoveryforthediscriminationbetweenallergicandirritantcontactdermatitis