Cargando…
Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis
Contact dermatitis tremendously impacts the quality of life of suffering patients. Currently, diagnostic regimes rely on allergy testing, exposure specification, and follow-up visits; however, distinguishing the clinical phenotype of irritant and allergic contact dermatitis remains challenging. Empl...
Autores principales: | Fortino, Vittorio, Wisgrill, Lukas, Werner, Paulina, Suomela, Sari, Linder, Nina, Jalonen, Erja, Suomalainen, Alina, Marwah, Veer, Kero, Mia, Pesonen, Maria, Lundin, Johan, Lauerma, Antti, Aalto-Korte, Kristiina, Greco, Dario, Alenius, Harri, Fyhrquist, Nanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7776829/ https://www.ncbi.nlm.nih.gov/pubmed/33318199 http://dx.doi.org/10.1073/pnas.2009192117 |
Ejemplares similares
-
Identification of novel miRNA‐mRNA regulatory networks in contact dermatitis by integrated microarray analysis
por: Werner, Paulina, et al.
Publicado: (2020) -
Integrative transcriptome analysis deciphers mechanisms of nickel contact dermatitis
por: Wisgrill, Lukas, et al.
Publicado: (2020) -
CD8+ T Cell Migration to the Skin Requires CD4+ Help in a Murine Model of Contact Hypersensitivity
por: Fyhrquist, Nanna, et al.
Publicado: (2012) -
A Robust and Accurate Method for Feature Selection and Prioritization from Multi-Class OMICs Data
por: Fortino, Vittorio, et al.
Publicado: (2014) -
Characterization of patients with occupational allergy to two new epoxy hardener compounds
por: Suomela, Sari, et al.
Publicado: (2022)