Cargando…

1192. H-NS-like Proteins in Pseudomonas aeruginosa Coordinately Silence Intragenic and Antisense Transcription

BACKGROUND: The H-NS-like proteins MvaT and MvaU act coordinately as global repressors in Pseudomonas aeruginosa by binding to AT-rich regions of the chromosome, which include horizontally acquired genes and numerous virulence factors. Although cells can tolerate the loss of either protein, identify...

Descripción completa

Detalles Bibliográficos
Autores principales: Lippa, Andrew M, Gebhardt, Michael J, Dove, Simon L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7777403/
http://dx.doi.org/10.1093/ofid/ofaa439.1377
_version_ 1783630893958561792
author Lippa, Andrew M
Gebhardt, Michael J
Dove, Simon L
author_facet Lippa, Andrew M
Gebhardt, Michael J
Dove, Simon L
author_sort Lippa, Andrew M
collection PubMed
description BACKGROUND: The H-NS-like proteins MvaT and MvaU act coordinately as global repressors in Pseudomonas aeruginosa by binding to AT-rich regions of the chromosome, which include horizontally acquired genes and numerous virulence factors. Although cells can tolerate the loss of either protein, identifying their combined regulatory effects has been challenging because the loss of both proteins is lethal due to induction of the prophage Pf4 and subsequent superinfection of the cell. Although in other bacteria, H-NS promotes cellular fitness by inhibiting intragenic transcription from AT-rich target regions, preventing them from sequestering RNA polymerase, a role for MvaT and MvaU in repressing transcription from intragenic promoters has not been demonstrated. METHODS: Here we utilize a parental strain that cannot be infected by Pf4 phage to identify the combined MvaT and MvaU regulon. RNA-seq was utilized to identify genes differentially expressed in cells lacking MvaU or both MvaU and MvaT. ChIP-seq was utilized to identify genes directly regulated by MvaT and MvaU in wild-type cells. Further, ChIP-seq was performed in cells of the parental strain and cells lacking both MvaT and MvaU to map genome-wide σ (70)-dependent promoters that were active in the presence or absence of both H-NS-like proteins. RESULTS: We demonstrate that the loss of both MvaT and MvaU, but not MvaU alone, leads to increased sense, antisense, and intragenic transcription from loci directly controlled by these proteins. We further show that the loss of MvaT and MvaU leads to a striking redistribution of RNA polymerase containing σ (70) to those genomic regions vacated by these proteins. Loss of MvaT and MvaU causes global changes in gene expression [Image: see text] Loss of MvaT and MvaU results in increased sense and antisense transcription [Image: see text] Loss of both MvaT and MvaU results in genome-wide redistribution of RNA polymerase [Image: see text] CONCLUSION: Our findings suggest that the ability of H-NS-like proteins to repress intragenic transcription is a universal function of these proteins and describe a second mechanism by which MvaT and MvaU may contribute to the growth of P. aeruginosa. DISCLOSURES: All Authors: No reported disclosures
format Online
Article
Text
id pubmed-7777403
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-77774032021-01-07 1192. H-NS-like Proteins in Pseudomonas aeruginosa Coordinately Silence Intragenic and Antisense Transcription Lippa, Andrew M Gebhardt, Michael J Dove, Simon L Open Forum Infect Dis Poster Abstracts BACKGROUND: The H-NS-like proteins MvaT and MvaU act coordinately as global repressors in Pseudomonas aeruginosa by binding to AT-rich regions of the chromosome, which include horizontally acquired genes and numerous virulence factors. Although cells can tolerate the loss of either protein, identifying their combined regulatory effects has been challenging because the loss of both proteins is lethal due to induction of the prophage Pf4 and subsequent superinfection of the cell. Although in other bacteria, H-NS promotes cellular fitness by inhibiting intragenic transcription from AT-rich target regions, preventing them from sequestering RNA polymerase, a role for MvaT and MvaU in repressing transcription from intragenic promoters has not been demonstrated. METHODS: Here we utilize a parental strain that cannot be infected by Pf4 phage to identify the combined MvaT and MvaU regulon. RNA-seq was utilized to identify genes differentially expressed in cells lacking MvaU or both MvaU and MvaT. ChIP-seq was utilized to identify genes directly regulated by MvaT and MvaU in wild-type cells. Further, ChIP-seq was performed in cells of the parental strain and cells lacking both MvaT and MvaU to map genome-wide σ (70)-dependent promoters that were active in the presence or absence of both H-NS-like proteins. RESULTS: We demonstrate that the loss of both MvaT and MvaU, but not MvaU alone, leads to increased sense, antisense, and intragenic transcription from loci directly controlled by these proteins. We further show that the loss of MvaT and MvaU leads to a striking redistribution of RNA polymerase containing σ (70) to those genomic regions vacated by these proteins. Loss of MvaT and MvaU causes global changes in gene expression [Image: see text] Loss of MvaT and MvaU results in increased sense and antisense transcription [Image: see text] Loss of both MvaT and MvaU results in genome-wide redistribution of RNA polymerase [Image: see text] CONCLUSION: Our findings suggest that the ability of H-NS-like proteins to repress intragenic transcription is a universal function of these proteins and describe a second mechanism by which MvaT and MvaU may contribute to the growth of P. aeruginosa. DISCLOSURES: All Authors: No reported disclosures Oxford University Press 2020-12-31 /pmc/articles/PMC7777403/ http://dx.doi.org/10.1093/ofid/ofaa439.1377 Text en © The Author 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Poster Abstracts
Lippa, Andrew M
Gebhardt, Michael J
Dove, Simon L
1192. H-NS-like Proteins in Pseudomonas aeruginosa Coordinately Silence Intragenic and Antisense Transcription
title 1192. H-NS-like Proteins in Pseudomonas aeruginosa Coordinately Silence Intragenic and Antisense Transcription
title_full 1192. H-NS-like Proteins in Pseudomonas aeruginosa Coordinately Silence Intragenic and Antisense Transcription
title_fullStr 1192. H-NS-like Proteins in Pseudomonas aeruginosa Coordinately Silence Intragenic and Antisense Transcription
title_full_unstemmed 1192. H-NS-like Proteins in Pseudomonas aeruginosa Coordinately Silence Intragenic and Antisense Transcription
title_short 1192. H-NS-like Proteins in Pseudomonas aeruginosa Coordinately Silence Intragenic and Antisense Transcription
title_sort 1192. h-ns-like proteins in pseudomonas aeruginosa coordinately silence intragenic and antisense transcription
topic Poster Abstracts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7777403/
http://dx.doi.org/10.1093/ofid/ofaa439.1377
work_keys_str_mv AT lippaandrewm 1192hnslikeproteinsinpseudomonasaeruginosacoordinatelysilenceintragenicandantisensetranscription
AT gebhardtmichaelj 1192hnslikeproteinsinpseudomonasaeruginosacoordinatelysilenceintragenicandantisensetranscription
AT dovesimonl 1192hnslikeproteinsinpseudomonasaeruginosacoordinatelysilenceintragenicandantisensetranscription