Cargando…
1275. Evaluation of in vitro activity of manogepix against multidrug-resistant and pan-resistant Candida auris from the New York Outbreak
BACKGROUND: An ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. NY C. auris isolates demonstrate resistance to fluconazole and variable resistance to other antifungals. Thus, there is an urgent need for new drugs with a novel mechanis...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7777565/ http://dx.doi.org/10.1093/ofid/ofaa439.1459 |
Sumario: | BACKGROUND: An ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. NY C. auris isolates demonstrate resistance to fluconazole and variable resistance to other antifungals. Thus, there is an urgent need for new drugs with a novel mechanism of action to combat the resistance challenge. Manogepix (MGX) is a first-in-class agent that targets the fungal Gwt1 enzyme. The prodrug, fosmanogepix, is in clinical development for the treatment of invasive fungal infections. METHODS: We evaluated the susceptibility of 200 NY C. auris isolates (2017-2020) to MGX and 10 comparators. Testing was performed using TREK frozen broth microdilution panels for FLC, VRC, ITC, ISA, POS, AFG, CAS, and MFG. MGX MICs were evaluated (CLSI M27-A3 guidelines) using a 50% reduction in fungal growth endpoint at 24 h. MICs were determined by ETEST® at 24 h for AMB and FLC. We defined pan-resistant C. auris as isolates with in vitro resistance to two or more azoles, all echinocandins, and AMB. The epidemiological cutoff values (ECVs, ECOFFs) for MGX were estimated using the Microsoft Excel spreadsheet calculator ECOFFinder. RESULTS: MGX demonstrated lower MICs than comparators (MIC(50) and MIC(90) 0.03 mg/L; range 0.004-0.06 mg/L). MGX was 8-32-fold more active that the echinocandins, 16-64-fold more active than the azoles, and 64-fold more active than AMB. No differences were found in the MGX or comparators’ MIC(50), MIC(90,) or GEOMEAN values when subsets of clinical, surveillance, and environmental isolates were evaluated. The range of MGX MIC values for six C. auris pan-resistant isolates was 0.008-0.015 mg/L, and the median and mode MIC values were 0.015 mg/L, demonstrating that MGX retains activity against these isolates. The MGX epidemiological cutoff value (ECV, 99% cutoff) was 0.06 mg/L. CONCLUSION: MGX MICs were low against C. auris isolates including those with variable patterns of resistance to AMB, azoles, and echinocandins. In addition, MGX retained potent activity against six pan-resistant isolates. These data support the continued clinical evaluation of fosmanogepix for the treatment of C. auris infections, including highly resistant isolates. DISCLOSURES: Karen J. Shaw, PhD, Amplyx (Consultant)Forge Therapeutics (Consultant) Vishnu Chaturvedi, PhD, Amplyx (Grant/Research Support) |
---|