Cargando…
1571. In Vitro Activity of Ceftazidime-Avibactam and Comparator Agents Against MDR Enterobacterales and Pseudomonas aeruginosa Collected in Latin America During the ATLAS Global Surveillance Program 2017-2018
BACKGROUND: Ceftazidime-avibactam (CAZ-AVI) is a β-lactam/non-β-lactam β-lactamase inhibitor combination that can inhibit class A, C and some class D β-lactamases. Resistance caused by these β-lactamases often results in multidrug-resistance (MDR). This study evaluated the in vitro activity of CAZ-A...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778193/ http://dx.doi.org/10.1093/ofid/ofaa439.1751 |
Sumario: | BACKGROUND: Ceftazidime-avibactam (CAZ-AVI) is a β-lactam/non-β-lactam β-lactamase inhibitor combination that can inhibit class A, C and some class D β-lactamases. Resistance caused by these β-lactamases often results in multidrug-resistance (MDR). This study evaluated the in vitro activity of CAZ-AVI and comparators against MDR Enterobacterales and Pseudomonas aeruginosa isolates collected from patients in Latin America. METHODS: Non-duplicate clinical isolates were collected in 2017-2018 in 10 countries in Latin America. Susceptibility testing was performed using CLSI broth microdilution and interpreted using CLSI 2020 and FDA (tigecycline) breakpoints. MDR was defined as resistant (R) to ≥3 of 7 sentinel drugs: amikacin (AMK), aztreonam (ATM), cefepime (FEP), colistin (CST), levofloxacin (LVX), meropenem (MEM), and piperacillin-tazobactam (TZP). RESULTS: The activity of CAZ-AVI and comparators against all isolates and MDR subsets is shown in the table. MDR rates for the studied species ranged from 17.6% among E. cloacae to 31.0% among K. pneumoniae. CAZ-AVI was active against 99% of Enterobacterales isolates and maintained activity against 85-99% of MDR isolates of the examined species. Only tigecycline showed comparable or higher activity. Among P. aeruginosa, CAZ-AVI was active against 86% of all isolates and 45% of MDR isolates; no other studied drug was more active. The three most common MDR phenotypes among Enterobacterales were 1) R to ATM, FEP, and LVX (n=538, 50% of all MDR Enterobacterales; 100% susceptible (S) to CAZ-AVI), 2) R to all sentinel drugs except AMK and CST (n=112, 10% of all MDR isolates; 88% S to CAZ-AVI), and 3) R to ATM, FEP, LVX, and TZP (n=111, 10% of all MDR Enterobacterales; 100% S to CAZ-AVI). The three most common MDR phenotypes among P. aeruginosa were 1) R to all sentinel drugs except CST (n=70, 22% of all MDR isolates; 20% S to CAZ-AVI), 2) R to AMK, LVX, and MEM (n=33, 10% of all MDR isolates; 33% S to CAZ-AVI), and 3) R to all sentinel drugs except AMK and CST (n=30, 9% of all MDR isolates; 70% S to CAZ-AVI). Table [Image: see text] CONCLUSION: These in vitro data suggest that CAZ-AVI can be an effective treatment option for infections caused by MDR Enterobacterales and P. aeruginosa collected in Latin America. DISCLOSURES: Krystyna Kazmierczak, PhD, IHMA (Employee)Pfizer, Inc. (Consultant) Sibylle Lob, PhD, IHMA (Employee)Pfizer, Inc. (Consultant) Greg Stone, PhD, AztraZeneca (Shareholder, Former Employee)Pfizer, Inc. (Employee) Daniel F. Sahm, PhD, IHMA (Employee)Pfizer, Inc. (Consultant)Shionogi & Co., Ltd. (Independent Contractor) |
---|