Cargando…
Structural modeling and phylogenetic analysis for infectious disease transmission pattern based on maximum likelihood tree approach
The contagious disease transmission pattern outbreak caused a massive human casualty and became a pandemic, as confirmed by the World Health Organization (WHO). The present research aims to understand the infectious disease transmission pattern outbreak due to molecular epidemiology. Hence, infected...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778505/ https://www.ncbi.nlm.nih.gov/pubmed/33425052 http://dx.doi.org/10.1007/s12652-020-02702-8 |
Sumario: | The contagious disease transmission pattern outbreak caused a massive human casualty and became a pandemic, as confirmed by the World Health Organization (WHO). The present research aims to understand the infectious disease transmission pattern outbreak due to molecular epidemiology. Hence, infected patients over time can spread infectious disease. The virus may develop further mutations, and that there might be a more toxic virulent strain, which leads to several environmental risk factors. Therefore, it is essential to monitor and characterize patient profiles, variants, symptoms, geographic locations, and treatment responses to analyze and evaluate infectious disease patterns among humans. This research proposes the Evolutionary tree analysis (ETA) for the molecular evolutionary genetic analysis to reduce medical risk factors. Furthermore, The Maximum likelihood tree method (MLTM) has been used to analyze the selective pressure, which is examined to identify a mutation that may influence the infectious disease transmission pattern’s clinical progress. This study also utilizes ETA with Markov Chain Bayesian Statistics (MCBS) approach to reconstruct transmission trees with sequence information. The experimental shows that the proposed ETA-MCBS method achieves a 97.55% accuracy, prediction of 99.56%, and 98.55% performance compared to other existing methods. |
---|