Cargando…

CoViTris2020 and ChloViD2020: a striking new hope in COVID-19 therapy

ABSTRACT: Designing anticoronavirus disease 2019 (anti-COVID-19) agents is the primary concern of medicinal chemists/drug designers nowadays. Repurposing of known active compounds against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new effective and time-saving trend in ant...

Descripción completa

Detalles Bibliográficos
Autor principal: Rabie, Amgad M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778709/
https://www.ncbi.nlm.nih.gov/pubmed/33389560
http://dx.doi.org/10.1007/s11030-020-10169-0
Descripción
Sumario:ABSTRACT: Designing anticoronavirus disease 2019 (anti-COVID-19) agents is the primary concern of medicinal chemists/drug designers nowadays. Repurposing of known active compounds against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new effective and time-saving trend in anti-COVID-19 drug discovery. Thorough inhibition of the coronaviral-2 proteins (i.e., multitarget inhibition) is a possible powerful favorable strategy for developing effectively potent drugs for COVID-19. In this new research study, I succeeded to repurpose the two antioxidant polyhydroxy-1,3,4-oxadiazole compounds CoViTris2020 and ChloViD2020 as the first multitarget coronaviral protein blockers with extremely higher potencies (reach about 65 and 304 times, for CoViTris2020, and 20 and 93 times, for ChloViD2020, more potent than remdesivir and favipiravir, respectively). These two 2,5-disubstituted-1,3,4-oxadiazoles were computationally studied (through molecular docking in almost all SARS-CoV-2 proteins) and biologically assessed (through a newly established robust in vitro anti-COVID-19 assay) for their anticoronaviral-2 bioactivities. The data obtained from the docking investigation showed that both ligands promisingly exhibited very strong inhibitory binding affinities with almost all docked enzymes (e.g., they displayed extremely lower binding energies of − 12.00 and − 9.60 kcal/mol, respectively, with the SARS-CoV-2 RNA-dependent RNA polymerase “RdRp”). The results of the biological assay revealed that CoViTris2020 and ChloViD2020 significantly displayed very high anti-COVID-19 activities (anti-SARS-CoV-2 EC(50) = 0.31 and 1.01 μM, respectively). Further in vivo/clinical studies for the development of CoViTris2020 and ChloViD2020 as anti-COVID-19 medications are required. In brief, the ascent of CoViTris2020 and ChloViD2020 as the two lead members of the novel family of anti-COVID-19 polyphenolic 2,5-disubstituted-1,3,4-oxadiazole derivatives represents a promising hope in COVID-19 therapy. GRAPHIC ABSTRACT: CoViTris2020 and ChloViD2020 inhibit SARS-CoV-2 life cycle with surprising EC(50) values of 0.31 and 1.01 μM, respectively. CoViTris2020 strongly inhibits coronaviral-2 RdRp with exceptionally lower inhibitory binding energy of − 12.00 kcal/mol. [Image: see text]