Cargando…
Analysis and best parameters selection for person recognition based on gait model using CNN algorithm and image augmentation
Person Recognition based on Gait Model (PRGM) and motion features is are indeed a challenging and novel task due to their usages and to the critical issues of human pose variation, human body occlusion, camera view variation, etc. In this project, a deep convolution neural network (CNN) was modified...
Autores principales: | Saleh, Abeer Mohsin, Hamoud, Talal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778727/ https://www.ncbi.nlm.nih.gov/pubmed/33425651 http://dx.doi.org/10.1186/s40537-020-00387-6 |
Ejemplares similares
-
COVID-19 CT image recognition algorithm based on transformer and CNN()
por: Fan, Xiaole, et al.
Publicado: (2022) -
CNN-SVM for Microvascular Morphological Type Recognition with Data Augmentation
por: Xue, Di-Xiu, et al.
Publicado: (2016) -
Gait-CNN-ViT: Multi-Model Gait Recognition with Convolutional Neural Networks and Vision Transformer
por: Mogan, Jashila Nair, et al.
Publicado: (2023) -
Selection of the Best Set of Features for sEMG-Based Hand Gesture Recognition Applying a CNN Architecture
por: Sandoval-Espino, Jorge Arturo, et al.
Publicado: (2022) -
Personality-Based Emotion Recognition Using EEG Signals with a CNN-LSTM Network
por: Hosseini, Mohammad Saleh Khajeh, et al.
Publicado: (2023)