Cargando…

PSORTdb 4.0: expanded and redesigned bacterial and archaeal protein subcellular localization database incorporating new secondary localizations

Protein subcellular localization (SCL) is important for understanding protein function, genome annotation, and aids identification of potential cell surface diagnostic markers, drug targets, or vaccine components. PSORTdb comprises ePSORTdb, a manually curated database of experimentally verified pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Lau, Wing Yin Venus, Hoad, Gemma R, Jin, Vivian, Winsor, Geoffrey L, Madyan, Ashmeet, Gray, Kristen L, Laird, Matthew R, Lo, Raymond, Brinkman, Fiona S L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778896/
https://www.ncbi.nlm.nih.gov/pubmed/33313828
http://dx.doi.org/10.1093/nar/gkaa1095
Descripción
Sumario:Protein subcellular localization (SCL) is important for understanding protein function, genome annotation, and aids identification of potential cell surface diagnostic markers, drug targets, or vaccine components. PSORTdb comprises ePSORTdb, a manually curated database of experimentally verified protein SCLs, and cPSORTdb, a pre-computed database of PSORTb-predicted SCLs for NCBI’s RefSeq deduced bacterial and archaeal proteomes. We now report PSORTdb 4.0 (http://db.psort.org/). It features a website refresh, in particular a more user-friendly database search. It also addresses the need to uniquely identify proteins from NCBI genomes now that GI numbers have been retired. It further expands both ePSORTdb and cPSORTdb, including additional data about novel secondary localizations, such as proteins found in bacterial outer membrane vesicles. Protein predictions in cPSORTdb have increased along with the number of available microbial genomes, from approximately 13 million when PSORTdb 3.0 was released, to over 66 million currently. Now, analyses of both complete and draft genomes are included. This expanded database will be of wide use to researchers developing SCL predictors or studying diverse microbes, including medically, agriculturally and industrially important species that have both classic or atypical cell envelope structures or vesicles.