Cargando…

SilencerDB: a comprehensive database of silencers

Gene regulatory elements, including promoters, enhancers, silencers, etc., control transcriptional programs in a spatiotemporal manner. Though these elements are known to be able to induce either positive or negative transcriptional control, the community has been mostly studying enhancers which amp...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Wanwen, Chen, Shengquan, Cui, Xuejian, Chen, Xiaoyang, Gao, Zijing, Jiang, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778955/
https://www.ncbi.nlm.nih.gov/pubmed/33045745
http://dx.doi.org/10.1093/nar/gkaa839
Descripción
Sumario:Gene regulatory elements, including promoters, enhancers, silencers, etc., control transcriptional programs in a spatiotemporal manner. Though these elements are known to be able to induce either positive or negative transcriptional control, the community has been mostly studying enhancers which amplify transcription initiation, with less emphasis given to silencers which repress gene expression. To facilitate the study of silencers and the investigation of their potential roles in transcriptional control, we developed SilencerDB (http://health.tsinghua.edu.cn/silencerdb/), a comprehensive database of silencers by manually curating silencers from 2300 published articles. The current version, SilencerDB 1.0, contains (1) 33 060 validated silencers from experimental methods, and (ii) 5 045 547 predicted silencers from state-of-the-art machine learning methods. The functionality of SilencerDB includes (a) standardized categorization of silencers in a tree-structured class hierarchy based on species, organ, tissue and cell line and (b) comprehensive annotations of silencers with the nearest gene and potential regulatory genes. SilencerDB, to the best of our knowledge, is the first comprehensive database at this scale dedicated to silencers, with reliable annotations and user-friendly interactive database features. We believe this database has the potential to enable advanced understanding of silencers in regulatory mechanisms and to empower researchers to devise diverse applications of silencers in disease development.