Cargando…

deepBase v3.0: expression atlas and interactive analysis of ncRNAs from thousands of deep-sequencing data

Eukaryotic genomes encode thousands of small and large non-coding RNAs (ncRNAs). However, the expression, functions and evolution of these ncRNAs are still largely unknown. In this study, we have updated deepBase to version 3.0 (deepBase v3.0, http://rna.sysu.edu.cn/deepbase3/index.html), an increas...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Fangzhou, Liu, Shurong, Wang, Junhao, Xuan, Jiajia, Zhang, Xiaoqin, Qu, Lianghu, Zheng, Lingling, Yang, Jianhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7778966/
https://www.ncbi.nlm.nih.gov/pubmed/33175131
http://dx.doi.org/10.1093/nar/gkaa1039
Descripción
Sumario:Eukaryotic genomes encode thousands of small and large non-coding RNAs (ncRNAs). However, the expression, functions and evolution of these ncRNAs are still largely unknown. In this study, we have updated deepBase to version 3.0 (deepBase v3.0, http://rna.sysu.edu.cn/deepbase3/index.html), an increasingly popular and openly licensed resource that facilitates integrative and interactive display and analysis of the expression, evolution, and functions of various ncRNAs by deeply mining thousands of high-throughput sequencing data from tissue, tumor and exosome samples. We updated deepBase v3.0 to provide the most comprehensive expression atlas of small RNAs and lncRNAs by integrating ∼67 620 data from 80 normal tissues and ∼50 cancer tissues. The extracellular patterns of various ncRNAs were profiled to explore their applications for discovery of noninvasive biomarkers. Moreover, we constructed survival maps of tRNA-derived RNA Fragments (tRFs), miRNAs, snoRNAs and lncRNAs by analyzing >45 000 cancer sample data and corresponding clinical information. We also developed interactive webs to analyze the differential expression and biological functions of various ncRNAs in ∼50 types of cancers. This update is expected to provide a variety of new modules and graphic visualizations to facilitate analyses and explorations of the functions and mechanisms of various types of ncRNAs.