Cargando…
A slice classification model-facilitated 3D encoder–decoder network for segmenting organs at risk in head and neck cancer
For deep learning networks used to segment organs at risk (OARs) in head and neck (H&N) cancers, the class-imbalance problem between small volume OARs and whole computed tomography (CT) images results in delineation with serious false-positives on irrelevant slices and unnecessary time-consuming...
Autores principales: | Zhang, Shuming, Wang, Hao, Tian, Suqing, Zhang, Xuyang, Li, Jiaqi, Lei, Runhong, Gao, Mingze, Liu, Chunlei, Yang, Li, Bi, Xinfang, Zhu, Linlin, Zhu, Senhua, Xu, Ting, Yang, Ruijie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779351/ https://www.ncbi.nlm.nih.gov/pubmed/33029634 http://dx.doi.org/10.1093/jrr/rraa094 |
Ejemplares similares
-
Neuron segmentation using 3D wavelet integrated encoder–decoder network
por: Li, Qiufu, et al.
Publicado: (2021) -
Noncoplanar VMAT for Brain Metastases: A Plan Quality and Delivery Efficiency Comparison With Coplanar VMAT, IMRT, and CyberKnife
por: Zhang, Shuming, et al.
Publicado: (2019) -
Image Segmentation Using Encoder-Decoder with Deformable Convolutions
por: Gurita, Andreea, et al.
Publicado: (2021) -
DCNet: Densely Connected Deep Convolutional Encoder–Decoder Network for Nasopharyngeal Carcinoma Segmentation
por: Li, Yang, et al.
Publicado: (2021) -
EDPNet: An Encoding–Decoding Network with Pyramidal Representation for Semantic Image Segmentation
por: Chen, Dong, et al.
Publicado: (2023)