Cargando…
Prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community
Deep-sea hydrothermal vents are associated with seafloor tectonic and magmatic activity, and the communities living there are subject to disturbance. Eruptions can be frequent and catastrophic, raising questions about how these communities persist and maintain regional biodiversity. Prior studies of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779506/ https://www.ncbi.nlm.nih.gov/pubmed/33352072 http://dx.doi.org/10.1098/rspb.2020.2070 |
_version_ | 1783631347200294912 |
---|---|
author | Mullineaux, L. S. Mills, S. W. Le Bris, N. Beaulieu, S. E. Sievert, S. M. Dykman, L. N. |
author_facet | Mullineaux, L. S. Mills, S. W. Le Bris, N. Beaulieu, S. E. Sievert, S. M. Dykman, L. N. |
author_sort | Mullineaux, L. S. |
collection | PubMed |
description | Deep-sea hydrothermal vents are associated with seafloor tectonic and magmatic activity, and the communities living there are subject to disturbance. Eruptions can be frequent and catastrophic, raising questions about how these communities persist and maintain regional biodiversity. Prior studies of frequently disturbed vents have led to suggestions that faunal recovery can occur within 2–4 years. We use an unprecedented long-term (11-year) series of colonization data following a catastrophic 2006 seafloor eruption on the East Pacific Rise to show that faunal successional changes continue beyond a decade following the disturbance. Species composition at nine months post-eruption was conspicuously different than the pre-eruption ‘baseline' state, which had been characterized in 1998 (85 months after disturbance by the previous 1991 eruption). By 96 months post-eruption, species composition was approaching the pre-eruption state, but continued to change up through to the end of our measurements at 135 months, indicating that the ‘baseline' state was not a climax community. The strong variation observed in species composition across environmental gradients and successional stages highlights the importance of long-term, distributed sampling in order to understand the consequences of disturbance for maintenance of a diverse regional species pool. This perspective is critical for characterizing the resilience of vent species to both natural disturbance and human impacts such as deep-sea mining. |
format | Online Article Text |
id | pubmed-7779506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-77795062021-01-05 Prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community Mullineaux, L. S. Mills, S. W. Le Bris, N. Beaulieu, S. E. Sievert, S. M. Dykman, L. N. Proc Biol Sci Ecology Deep-sea hydrothermal vents are associated with seafloor tectonic and magmatic activity, and the communities living there are subject to disturbance. Eruptions can be frequent and catastrophic, raising questions about how these communities persist and maintain regional biodiversity. Prior studies of frequently disturbed vents have led to suggestions that faunal recovery can occur within 2–4 years. We use an unprecedented long-term (11-year) series of colonization data following a catastrophic 2006 seafloor eruption on the East Pacific Rise to show that faunal successional changes continue beyond a decade following the disturbance. Species composition at nine months post-eruption was conspicuously different than the pre-eruption ‘baseline' state, which had been characterized in 1998 (85 months after disturbance by the previous 1991 eruption). By 96 months post-eruption, species composition was approaching the pre-eruption state, but continued to change up through to the end of our measurements at 135 months, indicating that the ‘baseline' state was not a climax community. The strong variation observed in species composition across environmental gradients and successional stages highlights the importance of long-term, distributed sampling in order to understand the consequences of disturbance for maintenance of a diverse regional species pool. This perspective is critical for characterizing the resilience of vent species to both natural disturbance and human impacts such as deep-sea mining. The Royal Society 2020-12-23 2020-12-23 /pmc/articles/PMC7779506/ /pubmed/33352072 http://dx.doi.org/10.1098/rspb.2020.2070 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Ecology Mullineaux, L. S. Mills, S. W. Le Bris, N. Beaulieu, S. E. Sievert, S. M. Dykman, L. N. Prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community |
title | Prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community |
title_full | Prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community |
title_fullStr | Prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community |
title_full_unstemmed | Prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community |
title_short | Prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community |
title_sort | prolonged recovery time after eruptive disturbance of a deep-sea hydrothermal vent community |
topic | Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779506/ https://www.ncbi.nlm.nih.gov/pubmed/33352072 http://dx.doi.org/10.1098/rspb.2020.2070 |
work_keys_str_mv | AT mullineauxls prolongedrecoverytimeaftereruptivedisturbanceofadeepseahydrothermalventcommunity AT millssw prolongedrecoverytimeaftereruptivedisturbanceofadeepseahydrothermalventcommunity AT lebrisn prolongedrecoverytimeaftereruptivedisturbanceofadeepseahydrothermalventcommunity AT beaulieuse prolongedrecoverytimeaftereruptivedisturbanceofadeepseahydrothermalventcommunity AT sievertsm prolongedrecoverytimeaftereruptivedisturbanceofadeepseahydrothermalventcommunity AT dykmanln prolongedrecoverytimeaftereruptivedisturbanceofadeepseahydrothermalventcommunity |