Cargando…
A Feature Tensor-Based Epileptic Detection Model Based on Improved Edge Removal Approach for Directed Brain Networks
Electroencephalograph (EEG) plays a significant role in the diagnostics process of epilepsy, but the detection rate is unsatisfactory when the length of interictal EEG signals is relatively short. Although the deliberate attacking theories for undirected brain network based on node removal method ca...
Autores principales: | Song, Chuancheng, Huo, Youliang, Ma, Junkai, Ding, Weiwei, Wang, Liye, Dai, Jiafei, Huang, Liya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779617/ https://www.ncbi.nlm.nih.gov/pubmed/33408603 http://dx.doi.org/10.3389/fnins.2020.557095 |
Ejemplares similares
-
Research on the Node Importance of a Weighted Network Based on the K-Order Propagation Number Algorithm
por: Tang, Pingchuan, et al.
Publicado: (2020) -
Epileptic Seizure Prediction Based on Permutation Entropy
por: Yang, Yanli, et al.
Publicado: (2018) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
Feature separation and adversarial training for the patient-independent detection of epileptic seizures
por: Yang, Yong, et al.
Publicado: (2023) -
Epileptic prediction using spatiotemporal information combined with optimal features strategy on EEG
por: Zhong, Lisha, et al.
Publicado: (2023)