Cargando…
Isolation and thermal stabilization of mouse ferroportin
Ferroportin (Fpn) is an essential mammalian iron transporter that is negatively regulated by the hormone hepcidin. Our current molecular understanding of Fpn‐mediated iron efflux and regulation is limited due to a lack of biochemical, biophysical and high‐resolution structural studies. A critical st...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780100/ https://www.ncbi.nlm.nih.gov/pubmed/33190422 http://dx.doi.org/10.1002/2211-5463.13039 |
Sumario: | Ferroportin (Fpn) is an essential mammalian iron transporter that is negatively regulated by the hormone hepcidin. Our current molecular understanding of Fpn‐mediated iron efflux and regulation is limited due to a lack of biochemical, biophysical and high‐resolution structural studies. A critical step towards understanding the transport mechanism of Fpn is to obtain sufficient quantities of pure and stable protein for downstream studies. As such, we detail here an expression and purification protocol for mouse Fpn yielding milligram quantities of pure protein. We have generated deletion constructs exhibiting enhanced thermal stability and which retained iron‐transport activity and hepcidin responsiveness, providing a platform for further biophysical studies of Fpn. |
---|