Cargando…

Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration

Biallelic loss‐of‐function MEGF10 mutations lead to MEGF10 myopathy, also known as early onset myopathy with areflexia, respiratory distress, and dysphagia (EMARDD). MEGF10 is expressed in muscle satellite cells, but the contribution of satellite cell dysfunction to MEGF10 myopathy is unclear. Myofi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chengcheng, Vargas‐Franco, Dorianmarie, Saha, Madhurima, Davis, Rachel M., Manko, Kelsey A., Draper, Isabelle, Pacak, Christina A., Kang, Peter B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780119/
https://www.ncbi.nlm.nih.gov/pubmed/33159715
http://dx.doi.org/10.1002/2211-5463.13031
_version_ 1783631455714279424
author Li, Chengcheng
Vargas‐Franco, Dorianmarie
Saha, Madhurima
Davis, Rachel M.
Manko, Kelsey A.
Draper, Isabelle
Pacak, Christina A.
Kang, Peter B.
author_facet Li, Chengcheng
Vargas‐Franco, Dorianmarie
Saha, Madhurima
Davis, Rachel M.
Manko, Kelsey A.
Draper, Isabelle
Pacak, Christina A.
Kang, Peter B.
author_sort Li, Chengcheng
collection PubMed
description Biallelic loss‐of‐function MEGF10 mutations lead to MEGF10 myopathy, also known as early onset myopathy with areflexia, respiratory distress, and dysphagia (EMARDD). MEGF10 is expressed in muscle satellite cells, but the contribution of satellite cell dysfunction to MEGF10 myopathy is unclear. Myofibers and satellite cells were isolated and examined from Megf10(−/−) and wild‐type mice. A separate set of mice underwent repeated intramuscular barium chloride injections. Megf10(−/−) muscle satellite cells showed reduced proliferation and migration, while Megf10(−/−) mouse skeletal muscles showed impaired regeneration. Megf10 deficiency is associated with impaired muscle regeneration, due in part to defects in satellite cell function. Efforts to rescue Megf10 deficiency will have therapeutic implications for MEGF10 myopathy and other inherited muscle diseases involving impaired muscle regeneration.
format Online
Article
Text
id pubmed-7780119
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-77801192021-01-08 Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration Li, Chengcheng Vargas‐Franco, Dorianmarie Saha, Madhurima Davis, Rachel M. Manko, Kelsey A. Draper, Isabelle Pacak, Christina A. Kang, Peter B. FEBS Open Bio Research Articles Biallelic loss‐of‐function MEGF10 mutations lead to MEGF10 myopathy, also known as early onset myopathy with areflexia, respiratory distress, and dysphagia (EMARDD). MEGF10 is expressed in muscle satellite cells, but the contribution of satellite cell dysfunction to MEGF10 myopathy is unclear. Myofibers and satellite cells were isolated and examined from Megf10(−/−) and wild‐type mice. A separate set of mice underwent repeated intramuscular barium chloride injections. Megf10(−/−) muscle satellite cells showed reduced proliferation and migration, while Megf10(−/−) mouse skeletal muscles showed impaired regeneration. Megf10 deficiency is associated with impaired muscle regeneration, due in part to defects in satellite cell function. Efforts to rescue Megf10 deficiency will have therapeutic implications for MEGF10 myopathy and other inherited muscle diseases involving impaired muscle regeneration. John Wiley and Sons Inc. 2020-11-26 /pmc/articles/PMC7780119/ /pubmed/33159715 http://dx.doi.org/10.1002/2211-5463.13031 Text en © 2020 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Li, Chengcheng
Vargas‐Franco, Dorianmarie
Saha, Madhurima
Davis, Rachel M.
Manko, Kelsey A.
Draper, Isabelle
Pacak, Christina A.
Kang, Peter B.
Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration
title Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration
title_full Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration
title_fullStr Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration
title_full_unstemmed Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration
title_short Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration
title_sort megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780119/
https://www.ncbi.nlm.nih.gov/pubmed/33159715
http://dx.doi.org/10.1002/2211-5463.13031
work_keys_str_mv AT lichengcheng megf10deficiencyimpairsskeletalmusclestemcellmigrationandmuscleregeneration
AT vargasfrancodorianmarie megf10deficiencyimpairsskeletalmusclestemcellmigrationandmuscleregeneration
AT sahamadhurima megf10deficiencyimpairsskeletalmusclestemcellmigrationandmuscleregeneration
AT davisrachelm megf10deficiencyimpairsskeletalmusclestemcellmigrationandmuscleregeneration
AT mankokelseya megf10deficiencyimpairsskeletalmusclestemcellmigrationandmuscleregeneration
AT draperisabelle megf10deficiencyimpairsskeletalmusclestemcellmigrationandmuscleregeneration
AT pacakchristinaa megf10deficiencyimpairsskeletalmusclestemcellmigrationandmuscleregeneration
AT kangpeterb megf10deficiencyimpairsskeletalmusclestemcellmigrationandmuscleregeneration