Cargando…

Decreased blood vessel density and endothelial cell subset dynamics during ageing of the endocrine system

Age‐associated alterations of the hormone‐secreting endocrine system cause organ dysfunction and disease states. However, the cell biology of endocrine tissue ageing remains poorly understood. Here, we perform comparative 3D imaging to understand age‐related perturbations of the endothelial cell (EC...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Junyu, Lippo, Luciana, Labella, Rossella, Tan, Sin Lih, Marsden, Brian D, Dustin, Michael L, Ramasamy, Saravana K, Kusumbe, Anjali P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780152/
https://www.ncbi.nlm.nih.gov/pubmed/33215738
http://dx.doi.org/10.15252/embj.2020105242
Descripción
Sumario:Age‐associated alterations of the hormone‐secreting endocrine system cause organ dysfunction and disease states. However, the cell biology of endocrine tissue ageing remains poorly understood. Here, we perform comparative 3D imaging to understand age‐related perturbations of the endothelial cell (EC) compartment in endocrine glands. Datasets of a wide range of markers highlight a decline in capillary and artery numbers, but not of perivascular cells in pancreas, testis and thyroid gland, with age in mice and humans. Further, angiogenesis and β‐cell expansion in the pancreas are coupled by a distinct age‐dependent subset of ECs. While this EC subpopulation supports pancreatic β cells, it declines during ageing concomitant with increased expression of the gap junction protein Gja1. EC‐specific ablation of Gja1 restores β‐cell expansion in the aged pancreas. These results provide a proof of concept for understanding age‐related vascular changes and imply that therapeutic targeting of blood vessels may restore aged endocrine tissue function. This comprehensive data atlas offers over > 1,000 multicolour volumes for exploration and research in endocrinology, ageing, matrix and vascular biology.