Cargando…
Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data
The use of mathematical tumor growth models coupled to noisy imaging data has been suggested as a possible component in the push towards precision medicine. We discuss the generation of population and patient-specific virtual populations in this context, providing in silico experiments to demonstrat...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780222/ https://www.ncbi.nlm.nih.gov/pubmed/33378865 http://dx.doi.org/10.3934/mbe.2020341 |
_version_ | 1783631471543582720 |
---|---|
author | Henscheid, Nick |
author_facet | Henscheid, Nick |
author_sort | Henscheid, Nick |
collection | PubMed |
description | The use of mathematical tumor growth models coupled to noisy imaging data has been suggested as a possible component in the push towards precision medicine. We discuss the generation of population and patient-specific virtual populations in this context, providing in silico experiments to demonstrate how intra- and inter-patient heterogeneity can be estimated by applying rigorous statistical procedures to noisy molecular imaging data, and how the noise properties of such data can be analyzed to estimate uncertainties in predicted patient outcomes. |
format | Online Article Text |
id | pubmed-7780222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-77802222021-01-04 Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data Henscheid, Nick Math Biosci Eng Article The use of mathematical tumor growth models coupled to noisy imaging data has been suggested as a possible component in the push towards precision medicine. We discuss the generation of population and patient-specific virtual populations in this context, providing in silico experiments to demonstrate how intra- and inter-patient heterogeneity can be estimated by applying rigorous statistical procedures to noisy molecular imaging data, and how the noise properties of such data can be analyzed to estimate uncertainties in predicted patient outcomes. 2020-09-25 /pmc/articles/PMC7780222/ /pubmed/33378865 http://dx.doi.org/10.3934/mbe.2020341 Text en This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) |
spellingShingle | Article Henscheid, Nick Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data |
title | Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data |
title_full | Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data |
title_fullStr | Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data |
title_full_unstemmed | Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data |
title_short | Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data |
title_sort | generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780222/ https://www.ncbi.nlm.nih.gov/pubmed/33378865 http://dx.doi.org/10.3934/mbe.2020341 |
work_keys_str_mv | AT henscheidnick generatingpatientspecificvirtualtumorpopulationswithreactiondiffusionmodelsandmolecularimagingdata |