Cargando…

Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data

The use of mathematical tumor growth models coupled to noisy imaging data has been suggested as a possible component in the push towards precision medicine. We discuss the generation of population and patient-specific virtual populations in this context, providing in silico experiments to demonstrat...

Descripción completa

Detalles Bibliográficos
Autor principal: Henscheid, Nick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780222/
https://www.ncbi.nlm.nih.gov/pubmed/33378865
http://dx.doi.org/10.3934/mbe.2020341
_version_ 1783631471543582720
author Henscheid, Nick
author_facet Henscheid, Nick
author_sort Henscheid, Nick
collection PubMed
description The use of mathematical tumor growth models coupled to noisy imaging data has been suggested as a possible component in the push towards precision medicine. We discuss the generation of population and patient-specific virtual populations in this context, providing in silico experiments to demonstrate how intra- and inter-patient heterogeneity can be estimated by applying rigorous statistical procedures to noisy molecular imaging data, and how the noise properties of such data can be analyzed to estimate uncertainties in predicted patient outcomes.
format Online
Article
Text
id pubmed-7780222
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-77802222021-01-04 Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data Henscheid, Nick Math Biosci Eng Article The use of mathematical tumor growth models coupled to noisy imaging data has been suggested as a possible component in the push towards precision medicine. We discuss the generation of population and patient-specific virtual populations in this context, providing in silico experiments to demonstrate how intra- and inter-patient heterogeneity can be estimated by applying rigorous statistical procedures to noisy molecular imaging data, and how the noise properties of such data can be analyzed to estimate uncertainties in predicted patient outcomes. 2020-09-25 /pmc/articles/PMC7780222/ /pubmed/33378865 http://dx.doi.org/10.3934/mbe.2020341 Text en This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
spellingShingle Article
Henscheid, Nick
Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data
title Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data
title_full Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data
title_fullStr Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data
title_full_unstemmed Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data
title_short Generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data
title_sort generating patient-specific virtual tumor populations with reaction-diffusion models and molecular imaging data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780222/
https://www.ncbi.nlm.nih.gov/pubmed/33378865
http://dx.doi.org/10.3934/mbe.2020341
work_keys_str_mv AT henscheidnick generatingpatientspecificvirtualtumorpopulationswithreactiondiffusionmodelsandmolecularimagingdata