Cargando…
LncRNA-Associated ceRNA Network Reveals Novel Potential Biomarkers of Laryngeal Squamous Cell Carcinoma
OBJECTIVE: This study aims to construct a systematic mRNA-miRNA-lncRNA network to identify novel lncRNAs and miRNAs biomarkers for laryngeal squamous cell carcinoma (LSCC). METHODS: The mRNA, miRNA and lncRNA expression profiles of LSCC were obtained from Gene Expression Omnibus (GEO) database. The...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780331/ https://www.ncbi.nlm.nih.gov/pubmed/33371795 http://dx.doi.org/10.1177/1533033820985787 |
Sumario: | OBJECTIVE: This study aims to construct a systematic mRNA-miRNA-lncRNA network to identify novel lncRNAs and miRNAs biomarkers for laryngeal squamous cell carcinoma (LSCC). METHODS: The mRNA, miRNA and lncRNA expression profiles of LSCC were obtained from Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) were screened between LSCC tissues and controls. Functional analysis of DEmRNAs, DEmRNAs targeted by DEmiRNAs and DEmRNAs targeted by DElncRNAs were respectively performed. The miRWalk, starbase and DIANA-LncBase were respectively used to predict DEmiRNAs-DEmRNAs, DElncRNAs-DEmRNAs and DElncRNAs-DEmiRNAs pairs. ceRNA network was built by DEmiRNAs-DEmRNAs and DElncRNAs-DEmiRNAs pairs. LncRNA subcellular localization was predicted using lncLocator. Using published The Cancer Genome Atlas (TCGA) and external datasets (GSE127165 and GSE133632), we also validated the expression of key DElncRNAs and DEmiRNAs in ceRNA network. The diagnostic and prognostic value of candidate genes was evaluated by ROC curve analysis and survival analysis, respectively. RESULTS: There were 5 mRNA datasets, 3 miRNA datasets and 2 lncRNA datasets in this study. Totally, 2957 DEmRNAs, 61 DElncRNAs and 23 DEmiRNAs were identified. Functional analysis of DEmRNAs shows that they were significantly enriched in cancer-related pathways, such as DNA replication and extracellular matrix organization. There were 11 DEmiRNAs, 17 DElncRNAs and 967 DEmRNAs in the ceRNA network. Notably, up-regulated lncRNA DGCR5-down-regulated has-miR-338-3p/has-miR-139-5p pairs in this network were experimentally validated. Moreover, down-regulated AL121839.2, down-regulated LINC02147, up-regulated AC079328.2, up-regulated AC004943.2 and up-regulated HMGA2-AS1 were located in the cytoplasm. AL121839.2 and LINC02147 interacted with has-miR-1246. AC004943.2, AC079328.2 and HMGA2-AS1 targeted has-miR-3185, has-miR-3137 and has-miR-582-5p, respectively. Based on the TCGA and external datasets (GSE127165 and GSE133632), DGCR5 and AC004943.2 were significantly up-regulated while AL121839.2 and LINC02147, has-miR-338-3p, has-miR-139-5p and has-miR-582-5p were significantly down-regulated, which were consistent with our integration analysis. DGCR5, AL121839.2, LINC02147, AC004943.2, has-miR-338-3p, has-miR-139-5p and has-miR-582-5p could predict the occurrence of LSCC. Survival analysis suggested that only, AL121839.2 has potential prognostic value for LSCC. CONCLUSION: This study provided novel insights into the ceRNA network and uncovered novel lncRNAs and miRNAs with diagnostic value in LSCC. |
---|