Cargando…
Functional gene networks reveal distinct mechanisms segregating in migraine families
Migraine is the most common neurological disorder worldwide and it has been shown to have complex polygenic origins with a heritability of estimated 40–70%. Both common and rare genetic variants are believed to underlie the pathophysiology of the prevalent types of migraine, migraine with typical au...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780491/ https://www.ncbi.nlm.nih.gov/pubmed/32968778 http://dx.doi.org/10.1093/brain/awaa242 |
_version_ | 1783631513272713216 |
---|---|
author | Rasmussen, Andreas H Kogelman, Lisette J A Kristensen, David M Chalmer, Mona Ameri Olesen, Jes Hansen, Thomas Folkmann |
author_facet | Rasmussen, Andreas H Kogelman, Lisette J A Kristensen, David M Chalmer, Mona Ameri Olesen, Jes Hansen, Thomas Folkmann |
author_sort | Rasmussen, Andreas H |
collection | PubMed |
description | Migraine is the most common neurological disorder worldwide and it has been shown to have complex polygenic origins with a heritability of estimated 40–70%. Both common and rare genetic variants are believed to underlie the pathophysiology of the prevalent types of migraine, migraine with typical aura and migraine without aura. However, only common variants have been identified so far. Here we identify for the first time a gene module with rare mutations through a systems genetics approach integrating RNA sequencing data from brain and vascular tissues likely to be involved in migraine pathology in combination with whole genome sequencing of 117 migraine families. We found a gene module in the visual cortex, based on single nuclei RNA sequencing data, that had increased rare mutations in the migraine families and replicated this in a second independent cohort of 1930 patients. This module was mainly expressed by interneurons, pyramidal CA1, and pyramidal SS cells, and pathway analysis showed association with hormonal signalling (thyrotropin-releasing hormone receptor and oxytocin receptor signalling pathways), Alzheimer’s disease pathway, serotonin receptor pathway and general heterotrimeric G-protein signalling pathways. Our results demonstrate that rare functional gene variants are strongly implicated in the pathophysiology of migraine. Furthermore, we anticipate that the results can be used to explain the critical mechanisms behind migraine and potentially improving the treatment regime for migraine patients. |
format | Online Article Text |
id | pubmed-7780491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-77804912021-01-07 Functional gene networks reveal distinct mechanisms segregating in migraine families Rasmussen, Andreas H Kogelman, Lisette J A Kristensen, David M Chalmer, Mona Ameri Olesen, Jes Hansen, Thomas Folkmann Brain Original Articles Migraine is the most common neurological disorder worldwide and it has been shown to have complex polygenic origins with a heritability of estimated 40–70%. Both common and rare genetic variants are believed to underlie the pathophysiology of the prevalent types of migraine, migraine with typical aura and migraine without aura. However, only common variants have been identified so far. Here we identify for the first time a gene module with rare mutations through a systems genetics approach integrating RNA sequencing data from brain and vascular tissues likely to be involved in migraine pathology in combination with whole genome sequencing of 117 migraine families. We found a gene module in the visual cortex, based on single nuclei RNA sequencing data, that had increased rare mutations in the migraine families and replicated this in a second independent cohort of 1930 patients. This module was mainly expressed by interneurons, pyramidal CA1, and pyramidal SS cells, and pathway analysis showed association with hormonal signalling (thyrotropin-releasing hormone receptor and oxytocin receptor signalling pathways), Alzheimer’s disease pathway, serotonin receptor pathway and general heterotrimeric G-protein signalling pathways. Our results demonstrate that rare functional gene variants are strongly implicated in the pathophysiology of migraine. Furthermore, we anticipate that the results can be used to explain the critical mechanisms behind migraine and potentially improving the treatment regime for migraine patients. Oxford University Press 2020-09-24 /pmc/articles/PMC7780491/ /pubmed/32968778 http://dx.doi.org/10.1093/brain/awaa242 Text en © The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Rasmussen, Andreas H Kogelman, Lisette J A Kristensen, David M Chalmer, Mona Ameri Olesen, Jes Hansen, Thomas Folkmann Functional gene networks reveal distinct mechanisms segregating in migraine families |
title | Functional gene networks reveal distinct mechanisms segregating in migraine families |
title_full | Functional gene networks reveal distinct mechanisms segregating in migraine families |
title_fullStr | Functional gene networks reveal distinct mechanisms segregating in migraine families |
title_full_unstemmed | Functional gene networks reveal distinct mechanisms segregating in migraine families |
title_short | Functional gene networks reveal distinct mechanisms segregating in migraine families |
title_sort | functional gene networks reveal distinct mechanisms segregating in migraine families |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780491/ https://www.ncbi.nlm.nih.gov/pubmed/32968778 http://dx.doi.org/10.1093/brain/awaa242 |
work_keys_str_mv | AT rasmussenandreash functionalgenenetworksrevealdistinctmechanismssegregatinginmigrainefamilies AT kogelmanlisetteja functionalgenenetworksrevealdistinctmechanismssegregatinginmigrainefamilies AT kristensendavidm functionalgenenetworksrevealdistinctmechanismssegregatinginmigrainefamilies AT chalmermonaameri functionalgenenetworksrevealdistinctmechanismssegregatinginmigrainefamilies AT olesenjes functionalgenenetworksrevealdistinctmechanismssegregatinginmigrainefamilies AT hansenthomasfolkmann functionalgenenetworksrevealdistinctmechanismssegregatinginmigrainefamilies |