Cargando…
Machine learning identifies two autophagy-related genes as markers of recurrence in colorectal cancer
OBJECTIVE: Colorectal cancer (CRC) is the most common cancer worldwide. Patient outcomes following recurrence of CRC are very poor. Therefore, identifying the risk of CRC recurrence at an early stage would improve patient care. Accumulating evidence shows that autophagy plays an active role in tumor...
Autores principales: | Wu, Jianping, Liu, Sulai, Chen, Xiaoming, Xu, Hongfei, Tang, Yaoping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780659/ https://www.ncbi.nlm.nih.gov/pubmed/33076720 http://dx.doi.org/10.1177/0300060520958808 |
Ejemplares similares
-
Decreased expression of autophagy markers in culture-positive patients with chronic otitis media
por: Jung, Junyang, et al.
Publicado: (2020) -
Learning curve of enhanced recovery after surgery program in open colorectal surgery
por: Lohsiriwat, Varut
Publicado: (2019) -
Bioinformatics analysis identifies potential diagnostic signatures
for coronary artery disease
por: Zhang, Dong, et al.
Publicado: (2020) -
Non-guided self-learning program for high-proficiency optical diagnosis of diminutive and small colorectal lesions: A single-endoscopist pilot study
por: Bustamante-Balén, Marco, et al.
Publicado: (2019) -
Identification of candidate biomarkers of liver hydatid disease via
microarray profiling, bioinformatics analysis, and machine
learning
por: Peng, Jinwu, et al.
Publicado: (2021)