Cargando…
The Mitochondria-Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective
Immunological mediators that originate outside the nervous system can affect neuronal health. However, their roles in neurodegeneration remain largely unknown. Here, we show that the p38MAPK-mediated immune pathway activated in intestinal cells of Caenorhabditis elegans upon mitochondrial dysfunctio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780887/ https://www.ncbi.nlm.nih.gov/pubmed/27545884 http://dx.doi.org/10.1016/j.celrep.2016.07.077 |
Sumario: | Immunological mediators that originate outside the nervous system can affect neuronal health. However, their roles in neurodegeneration remain largely unknown. Here, we show that the p38MAPK-mediated immune pathway activated in intestinal cells of Caenorhabditis elegans upon mitochondrial dysfunction protects neurons in a cell-non-autonomous fashion. Specifically, mitochondrial complex I dysfunction induced by rotenone activates the p38MAPK/CREB/ATF-7-dependent innate immune response pathway in intestinal cells of C. elegans. Activation of p38MAPK in the gut is neuroprotective. Enhancing the p38MAPK-mediated immune pathway in intestinal cells alone suppresses rotenone-induced dopaminergic neuron loss, while downregulating it in the intestine exacerbates neurodegeneration. The p38MAPK/ATF-7 immune pathway modulates autophagy and requires autophagy and the PTEN-induced putative kinase PINK-1 for conferring neuroprotection. Thus, mitochondrial damage induces the clearance of mitochondria by the immune pathway, protecting the organism from the toxic effects of mitochondrial dysfunction. We propose that mitochondria are subject to constant surveillance by innate immune mechanisms. |
---|