Cargando…
Predicting the Disease Risk of Protein Mutation Sequences With Pre-training Model
Accurately identifying the missense mutations is of great help to alleviate the loss of protein function and structural changes, which might greatly reduce the risk of disease for tumor suppressor genes (e.g., BRCA1 and PTEN). In this paper, we propose a hybrid framework, called BertVS, that predict...
Autores principales: | Li, Kuan, Zhong, Yue, Lin, Xuan, Quan, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780924/ https://www.ncbi.nlm.nih.gov/pubmed/33408741 http://dx.doi.org/10.3389/fgene.2020.605620 |
Ejemplares similares
-
ProtTrans-Glutar: Incorporating Features From Pre-trained Transformer-Based Models for Predicting Glutarylation Sites
por: Indriani, Fatma, et al.
Publicado: (2022) -
CNNArginineMe: A CNN structure for training models for predicting arginine methylation sites based on the One-Hot encoding of peptide sequence
por: Zhao, Jiaojiao, et al.
Publicado: (2022) -
SAWRPI: A Stacking Ensemble Framework With Adaptive Weight for Predicting ncRNA-Protein Interactions Using Sequence Information
por: Ren, Zhong-Hao, et al.
Publicado: (2022) -
An Improved Deep Forest Model for Predicting Self-Interacting Proteins From Protein Sequence Using Wavelet Transformation
por: Chen, Zhan-Heng, et al.
Publicado: (2019) -
A new ferroptosis-related genetic mutation risk model predicts the prognosis of skin cutaneous melanoma
por: He, Jia, et al.
Publicado: (2023)