Cargando…
What Sepsis Researchers Can Learn from COVID-19
Autores principales: | Schinkel, Michiel, Virk, Harjeet S., Nanayakkara, Prabath W. B., van der Poll, Tom, Wiersinga, W. Joost |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Thoracic Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781118/ https://www.ncbi.nlm.nih.gov/pubmed/33125253 http://dx.doi.org/10.1164/rccm.202010-4023LE |
Ejemplares similares
-
Sepsis Performance Improvement Programs: From Evidence Toward Clinical Implementation
por: Schinkel, Michiel, et al.
Publicado: (2022) -
Artificial Intelligence for Early Sepsis Detection: A Word of Caution
por: Schinkel, Michiel, et al.
Publicado: (2023) -
Detecting changes in the performance of a clinical machine learning tool over time
por: Schinkel, Michiel, et al.
Publicado: (2023) -
Embracing cohort heterogeneity in clinical machine learning development: a step toward generalizable models
por: Schinkel, Michiel, et al.
Publicado: (2023) -
The impact of a sepsis performance improvement program in the emergency department: a before–after intervention study
por: Schinkel, Michiel, et al.
Publicado: (2022)