Cargando…
A rotation based regularization method for semi-supervised learning
In manifold learning, the intrinsic geometry of the manifold is explored and preserved by identifying the optimal local neighborhood around each observation. It is well known that when a Riemannian manifold is unfolded correctly, the observations lying spatially near to the manifold, should remain n...
Autores principales: | Shukla, Prashant, Abhishek, Verma, Shekhar, Kumar, Manish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781196/ https://www.ncbi.nlm.nih.gov/pubmed/33424433 http://dx.doi.org/10.1007/s10044-020-00947-9 |
Ejemplares similares
-
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine
por: Muhammad Zaly Shah, Muhammad Zafran, et al.
Publicado: (2022) -
Interpreting SVM for medical images using Quadtree
por: Shukla, Prashant, et al.
Publicado: (2020) -
A semi-supervised learning approach with consistency regularization for tumor histopathological images analysis
por: Jiang, Yanyun, et al.
Publicado: (2023) -
Semi‐supervised empirical Bayes group‐regularized factor regression
por: Münch, Magnus M., et al.
Publicado: (2022)