Cargando…
Bias reduction and inference for electronic health record data under selection and phenotype misclassification: three case studies
Electronic Health Records (EHR) are not designed for population-based research, but they provide access to longitudinal health information for many individuals. Many statistical methods have been proposed to account for selection bias, missing data, phenotyping errors, or other problems that arise i...
Autores principales: | Beesley, Lauren J., Mukherjee, Bhramar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781342/ https://www.ncbi.nlm.nih.gov/pubmed/33398299 http://dx.doi.org/10.1101/2020.12.21.20248644 |
Ejemplares similares
-
Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification
por: Beesley, Lauren J., et al.
Publicado: (2022) -
Selection and Misclassification Biases in Longitudinal Studies
por: Haine, Denis, et al.
Publicado: (2018) -
Misclassification bias and unnecessary anxiety
por: Knight, Marian, et al.
Publicado: (2021) -
Misclassification and Bias in Military Studies of Mefloquine
por: Lee Nevin, Remington
Publicado: (2017) -
Genetic association studies and the effect of misclassification and selection bias in putative confounders
por: Avery, Christy L, et al.
Publicado: (2009)