Cargando…

Information theory inspired optimization algorithm for efficient service orchestration in distributed systems

Distributed Systems architectures are becoming the standard computational model for processing and transportation of information, especially for Cloud Computing environments. The increase in demand for application processing and data management from enterprise and end-user workloads continues to mov...

Descripción completa

Detalles Bibliográficos
Autor principal: Lima, Matheus Sant’Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781673/
https://www.ncbi.nlm.nih.gov/pubmed/33395689
http://dx.doi.org/10.1371/journal.pone.0242285
_version_ 1783631723742887936
author Lima, Matheus Sant’Ana
author_facet Lima, Matheus Sant’Ana
author_sort Lima, Matheus Sant’Ana
collection PubMed
description Distributed Systems architectures are becoming the standard computational model for processing and transportation of information, especially for Cloud Computing environments. The increase in demand for application processing and data management from enterprise and end-user workloads continues to move from a single-node client-server architecture to a distributed multitier design where data processing and transmission are segregated. Software development must considerer the orchestration required to provision its core components in order to deploy the services efficiently in many independent, loosely coupled—physically and virtually interconnected—data centers spread geographically, across the globe. This network routing challenge can be modeled as a variation of the Travelling Salesman Problem (TSP). This paper proposes a new optimization algorithm for optimum route selection using Algorithmic Information Theory. The Kelly criterion for a Shannon-Bernoulli process is used to generate a reliable quantitative algorithm to find a near optimal solution tour. The algorithm is then verified by comparing the results with benchmark heuristic solutions in 3 test cases. A statistical analysis is designed to measure the significance of the results between the algorithms and the entropy function can be derived from the distribution. The tested results shown an improvement in the solution quality by producing routes with smaller length and time requirements. The quality of the results proves the flexibility of the proposed algorithm for problems with different complexities without relying in nature-inspired models such as Genetic Algorithms, Ant Colony, Cross Entropy, Neural Networks, 2opt and Simulated Annealing. The proposed algorithm can be used by applications to deploy services across large cluster of nodes by making better decision in the route design. The findings in this paper unifies critical areas in Computer Science, Mathematics and Statistics that many researchers have not explored and provided a new interpretation that advances the understanding of the role of entropy in decision problems encoded in Turing Machines.
format Online
Article
Text
id pubmed-7781673
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-77816732021-01-07 Information theory inspired optimization algorithm for efficient service orchestration in distributed systems Lima, Matheus Sant’Ana PLoS One Research Article Distributed Systems architectures are becoming the standard computational model for processing and transportation of information, especially for Cloud Computing environments. The increase in demand for application processing and data management from enterprise and end-user workloads continues to move from a single-node client-server architecture to a distributed multitier design where data processing and transmission are segregated. Software development must considerer the orchestration required to provision its core components in order to deploy the services efficiently in many independent, loosely coupled—physically and virtually interconnected—data centers spread geographically, across the globe. This network routing challenge can be modeled as a variation of the Travelling Salesman Problem (TSP). This paper proposes a new optimization algorithm for optimum route selection using Algorithmic Information Theory. The Kelly criterion for a Shannon-Bernoulli process is used to generate a reliable quantitative algorithm to find a near optimal solution tour. The algorithm is then verified by comparing the results with benchmark heuristic solutions in 3 test cases. A statistical analysis is designed to measure the significance of the results between the algorithms and the entropy function can be derived from the distribution. The tested results shown an improvement in the solution quality by producing routes with smaller length and time requirements. The quality of the results proves the flexibility of the proposed algorithm for problems with different complexities without relying in nature-inspired models such as Genetic Algorithms, Ant Colony, Cross Entropy, Neural Networks, 2opt and Simulated Annealing. The proposed algorithm can be used by applications to deploy services across large cluster of nodes by making better decision in the route design. The findings in this paper unifies critical areas in Computer Science, Mathematics and Statistics that many researchers have not explored and provided a new interpretation that advances the understanding of the role of entropy in decision problems encoded in Turing Machines. Public Library of Science 2021-01-04 /pmc/articles/PMC7781673/ /pubmed/33395689 http://dx.doi.org/10.1371/journal.pone.0242285 Text en © 2021 Matheus Sant’Ana Lima http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lima, Matheus Sant’Ana
Information theory inspired optimization algorithm for efficient service orchestration in distributed systems
title Information theory inspired optimization algorithm for efficient service orchestration in distributed systems
title_full Information theory inspired optimization algorithm for efficient service orchestration in distributed systems
title_fullStr Information theory inspired optimization algorithm for efficient service orchestration in distributed systems
title_full_unstemmed Information theory inspired optimization algorithm for efficient service orchestration in distributed systems
title_short Information theory inspired optimization algorithm for efficient service orchestration in distributed systems
title_sort information theory inspired optimization algorithm for efficient service orchestration in distributed systems
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781673/
https://www.ncbi.nlm.nih.gov/pubmed/33395689
http://dx.doi.org/10.1371/journal.pone.0242285
work_keys_str_mv AT limamatheussantana informationtheoryinspiredoptimizationalgorithmforefficientserviceorchestrationindistributedsystems