Cargando…

Bioequivalence data analysis

SAS(®) is commonly used for bioequivalence (BE) data analysis. R is a free and open software for general purpose data analysis, and is less frequently used than SAS(®) for BE data analysis. This tutorial explains how R can be used for BE data analysis to generate comparable results with SAS(®). The...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Gowooni, Kim, Hyungsub, Bae, Kyun-Seop
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Clinical Pharmacology and Therapeutics 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781810/
https://www.ncbi.nlm.nih.gov/pubmed/33425800
http://dx.doi.org/10.12793/tcp.2020.28.e20
_version_ 1783631754001645568
author Park, Gowooni
Kim, Hyungsub
Bae, Kyun-Seop
author_facet Park, Gowooni
Kim, Hyungsub
Bae, Kyun-Seop
author_sort Park, Gowooni
collection PubMed
description SAS(®) is commonly used for bioequivalence (BE) data analysis. R is a free and open software for general purpose data analysis, and is less frequently used than SAS(®) for BE data analysis. This tutorial explains how R can be used for BE data analysis to generate comparable results with SAS(®). The main SAS(®) procedures for BE data analysis are PROC GLM and PROC MIXED, and the corresponding R main packages are “sasLM” and “nlme” respectively. For fixed effects only or balanced data, the SAS(®) PROC GLM and R “sasLM” provide good estimates; however, for a mixed-effects model with unbalanced data, the SAS(®) PROC MIXED and R “nlme” are better for providing estimates without bias. The SAS(®) and R scripts are provided for convenience.
format Online
Article
Text
id pubmed-7781810
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Korean Society for Clinical Pharmacology and Therapeutics
record_format MEDLINE/PubMed
spelling pubmed-77818102021-01-08 Bioequivalence data analysis Park, Gowooni Kim, Hyungsub Bae, Kyun-Seop Transl Clin Pharmacol Tutorial SAS(®) is commonly used for bioequivalence (BE) data analysis. R is a free and open software for general purpose data analysis, and is less frequently used than SAS(®) for BE data analysis. This tutorial explains how R can be used for BE data analysis to generate comparable results with SAS(®). The main SAS(®) procedures for BE data analysis are PROC GLM and PROC MIXED, and the corresponding R main packages are “sasLM” and “nlme” respectively. For fixed effects only or balanced data, the SAS(®) PROC GLM and R “sasLM” provide good estimates; however, for a mixed-effects model with unbalanced data, the SAS(®) PROC MIXED and R “nlme” are better for providing estimates without bias. The SAS(®) and R scripts are provided for convenience. Korean Society for Clinical Pharmacology and Therapeutics 2020-12 2020-12-17 /pmc/articles/PMC7781810/ /pubmed/33425800 http://dx.doi.org/10.12793/tcp.2020.28.e20 Text en Copyright © 2020 Translational and Clinical Pharmacology https://creativecommons.org/licenses/by-nc/4.0/ It is identical to the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/).
spellingShingle Tutorial
Park, Gowooni
Kim, Hyungsub
Bae, Kyun-Seop
Bioequivalence data analysis
title Bioequivalence data analysis
title_full Bioequivalence data analysis
title_fullStr Bioequivalence data analysis
title_full_unstemmed Bioequivalence data analysis
title_short Bioequivalence data analysis
title_sort bioequivalence data analysis
topic Tutorial
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781810/
https://www.ncbi.nlm.nih.gov/pubmed/33425800
http://dx.doi.org/10.12793/tcp.2020.28.e20
work_keys_str_mv AT parkgowooni bioequivalencedataanalysis
AT kimhyungsub bioequivalencedataanalysis
AT baekyunseop bioequivalencedataanalysis