Cargando…

Dynamical Study of an Eco-Epidemiological Delay Model for Plankton System with Toxicity

In this paper, we analyze the complexity of an eco-epidemiological model for phytoplankton–zooplankton system in presence of toxicity and time delay. Holling type II function response is incorporated to address the predation rate as well as toxic substance distribution in zooplankton. It is also pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Thakur, Nilesh Kumar, Srivastava, Smriti Chandra, Ojha, Archana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781835/
https://www.ncbi.nlm.nih.gov/pubmed/33424195
http://dx.doi.org/10.1007/s40995-020-01042-8
Descripción
Sumario:In this paper, we analyze the complexity of an eco-epidemiological model for phytoplankton–zooplankton system in presence of toxicity and time delay. Holling type II function response is incorporated to address the predation rate as well as toxic substance distribution in zooplankton. It is also presumed that infected phytoplankton does recover from the viral infection. In the absence of time delay, stability and Hopf-bifurcation conditions are investigated to explore the system dynamics around all the possible equilibrium points. Further, in the presence of time delay, conditions for local stability are derived around the interior equilibria and the properties of the periodic solution are obtained by applying normal form theory and central manifold arguments. Computational simulation is performed to illustrate our theoretical findings. It is explored that system dynamics is very sensitive corresponding to carrying capacity and toxin liberation rate and able to generate chaos. Further, it is observed that time delay in the viral infection process can destabilize the phytoplankton density whereas zooplankton density remains in its old state. Incorporation of time delay also gives the scenario of double Hopf-bifurcation. Some control parameters are discussed to stabilize system dynamics. The effect of time delay on (i) growth rate of susceptible phytoplankton shows the extinction and double Hopf-bifurcation in the zooplankton population, (ii) a sufficiently large value of carrying capacity stabilizes the chaotic dynamics or makes the whole system chaotic with further increment.