Cargando…

supFunSim: Spatial Filtering Toolbox for EEG

Brain activity pattern recognition from EEG or MEG signal analysis is one of the most important method in cognitive neuroscience. The supFunSim library is a new Matlab toolbox which generates accurate EEG forward model and implements a collection of spatial filters for EEG source reconstruction, inc...

Descripción completa

Detalles Bibliográficos
Autores principales: Rykaczewski, Krzysztof, Nikadon, Jan, Duch, Włodzisław, Piotrowski, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782389/
https://www.ncbi.nlm.nih.gov/pubmed/32564239
http://dx.doi.org/10.1007/s12021-020-09464-w
Descripción
Sumario:Brain activity pattern recognition from EEG or MEG signal analysis is one of the most important method in cognitive neuroscience. The supFunSim library is a new Matlab toolbox which generates accurate EEG forward model and implements a collection of spatial filters for EEG source reconstruction, including the linearly constrained minimum-variance (LCMV), eigenspace LCMV, nulling (NL), and minimum-variance pseudo-unbiased reduced-rank (MV-PURE) filters in various versions. It also enables source-level directed connectivity analysis using partial directed coherence (PDC) measure. The supFunSim library is based on the well-known FieldTrip toolbox for EEG and MEG analysis and is written using object-oriented programming paradigm. The resulting modularity of the toolbox enables its simple extensibility. This paper gives a complete overview of the toolbox from both developer and end-user perspectives, including description of the installation process and use cases.