Cargando…
Terahertz pulse shaping using diffractive surfaces
Recent advances in deep learning have been providing non-intuitive solutions to various inverse problems in optics. At the intersection of machine learning and optics, diffractive networks merge wave-optics with deep learning to design task-specific elements to all-optically perform various tasks su...
Autores principales: | Veli, Muhammed, Mengu, Deniz, Yardimci, Nezih T., Luo, Yi, Li, Jingxi, Rivenson, Yair, Jarrahi, Mona, Ozcan, Aydogan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782497/ https://www.ncbi.nlm.nih.gov/pubmed/33397912 http://dx.doi.org/10.1038/s41467-020-20268-z |
Ejemplares similares
-
Spectrally encoded single-pixel machine vision using diffractive networks
por: Li, Jingxi, et al.
Publicado: (2021) -
Design of task-specific optical systems using broadband diffractive neural networks
por: Luo, Yi, et al.
Publicado: (2019) -
Classification and reconstruction of spatially overlapping phase images using diffractive optical networks
por: Mengu, Deniz, et al.
Publicado: (2022) -
All-optical information-processing capacity of diffractive surfaces
por: Kulce, Onur, et al.
Publicado: (2021) -
Ensemble learning of diffractive optical networks
por: Rahman, Md Sadman Sakib, et al.
Publicado: (2021)