Cargando…

Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer

The ability of two nearly-touching plasmonic nanoparticles to squeeze light into a nanometer gap has provided a myriad of fundamental insights into light–matter interaction. In this work, we construct a nanoelectromechanical system (NEMS) that capitalizes on the unique, singular behavior that arises...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Jung-Hwan, Raza, Søren, van de Groep, Jorik, Kang, Ju-Hyung, Li, Qitong, Kik, Pieter G., Brongersma, Mark L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782521/
https://www.ncbi.nlm.nih.gov/pubmed/33397929
http://dx.doi.org/10.1038/s41467-020-20273-2
_version_ 1783631921957306368
author Song, Jung-Hwan
Raza, Søren
van de Groep, Jorik
Kang, Ju-Hyung
Li, Qitong
Kik, Pieter G.
Brongersma, Mark L.
author_facet Song, Jung-Hwan
Raza, Søren
van de Groep, Jorik
Kang, Ju-Hyung
Li, Qitong
Kik, Pieter G.
Brongersma, Mark L.
author_sort Song, Jung-Hwan
collection PubMed
description The ability of two nearly-touching plasmonic nanoparticles to squeeze light into a nanometer gap has provided a myriad of fundamental insights into light–matter interaction. In this work, we construct a nanoelectromechanical system (NEMS) that capitalizes on the unique, singular behavior that arises at sub-nanometer particle-spacings to create an electro-optical modulator. Using in situ electron energy loss spectroscopy in a transmission electron microscope, we map the spectral and spatial changes in the plasmonic modes as they hybridize and evolve from a weak to a strong coupling regime. In the strongly-coupled regime, we observe a very large mechanical tunability (~250 meV/nm) of the bonding-dipole plasmon resonance of the dimer at ~1 nm gap spacing, right before detrimental quantum effects set in. We leverage our findings to realize a prototype NEMS light-intensity modulator operating at ~10 MHz and with a power consumption of only 4 fJ/bit.
format Online
Article
Text
id pubmed-7782521
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-77825212021-01-11 Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer Song, Jung-Hwan Raza, Søren van de Groep, Jorik Kang, Ju-Hyung Li, Qitong Kik, Pieter G. Brongersma, Mark L. Nat Commun Article The ability of two nearly-touching plasmonic nanoparticles to squeeze light into a nanometer gap has provided a myriad of fundamental insights into light–matter interaction. In this work, we construct a nanoelectromechanical system (NEMS) that capitalizes on the unique, singular behavior that arises at sub-nanometer particle-spacings to create an electro-optical modulator. Using in situ electron energy loss spectroscopy in a transmission electron microscope, we map the spectral and spatial changes in the plasmonic modes as they hybridize and evolve from a weak to a strong coupling regime. In the strongly-coupled regime, we observe a very large mechanical tunability (~250 meV/nm) of the bonding-dipole plasmon resonance of the dimer at ~1 nm gap spacing, right before detrimental quantum effects set in. We leverage our findings to realize a prototype NEMS light-intensity modulator operating at ~10 MHz and with a power consumption of only 4 fJ/bit. Nature Publishing Group UK 2021-01-04 /pmc/articles/PMC7782521/ /pubmed/33397929 http://dx.doi.org/10.1038/s41467-020-20273-2 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Song, Jung-Hwan
Raza, Søren
van de Groep, Jorik
Kang, Ju-Hyung
Li, Qitong
Kik, Pieter G.
Brongersma, Mark L.
Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_full Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_fullStr Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_full_unstemmed Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_short Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_sort nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782521/
https://www.ncbi.nlm.nih.gov/pubmed/33397929
http://dx.doi.org/10.1038/s41467-020-20273-2
work_keys_str_mv AT songjunghwan nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT razasøren nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT vandegroepjorik nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT kangjuhyung nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT liqitong nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT kikpieterg nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT brongersmamarkl nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer