Cargando…
Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes
The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783167/ https://www.ncbi.nlm.nih.gov/pubmed/32877528 http://dx.doi.org/10.1093/molbev/msaa216 |
_version_ | 1783632056943640576 |
---|---|
author | Shinzato, Chuya Khalturin, Konstantin Inoue, Jun Zayasu, Yuna Kanda, Miyuki Kawamitsu, Mayumi Yoshioka, Yuki Yamashita, Hiroshi Suzuki, Go Satoh, Noriyuki |
author_facet | Shinzato, Chuya Khalturin, Konstantin Inoue, Jun Zayasu, Yuna Kanda, Miyuki Kawamitsu, Mayumi Yoshioka, Yuki Yamashita, Hiroshi Suzuki, Go Satoh, Noriyuki |
author_sort | Shinzato, Chuya |
collection | PubMed |
description | The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures. |
format | Online Article Text |
id | pubmed-7783167 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-77831672021-01-08 Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes Shinzato, Chuya Khalturin, Konstantin Inoue, Jun Zayasu, Yuna Kanda, Miyuki Kawamitsu, Mayumi Yoshioka, Yuki Yamashita, Hiroshi Suzuki, Go Satoh, Noriyuki Mol Biol Evol Discoveries The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures. Oxford University Press 2020-09-02 /pmc/articles/PMC7783167/ /pubmed/32877528 http://dx.doi.org/10.1093/molbev/msaa216 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Discoveries Shinzato, Chuya Khalturin, Konstantin Inoue, Jun Zayasu, Yuna Kanda, Miyuki Kawamitsu, Mayumi Yoshioka, Yuki Yamashita, Hiroshi Suzuki, Go Satoh, Noriyuki Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes |
title | Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes |
title_full | Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes |
title_fullStr | Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes |
title_full_unstemmed | Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes |
title_short | Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes |
title_sort | eighteen coral genomes reveal the evolutionary origin of acropora strategies to accommodate environmental changes |
topic | Discoveries |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783167/ https://www.ncbi.nlm.nih.gov/pubmed/32877528 http://dx.doi.org/10.1093/molbev/msaa216 |
work_keys_str_mv | AT shinzatochuya eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges AT khalturinkonstantin eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges AT inouejun eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges AT zayasuyuna eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges AT kandamiyuki eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges AT kawamitsumayumi eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges AT yoshiokayuki eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges AT yamashitahiroshi eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges AT suzukigo eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges AT satohnoriyuki eighteencoralgenomesrevealtheevolutionaryoriginofacroporastrategiestoaccommodateenvironmentalchanges |