Cargando…
Deep Learning in Mining Biological Data
Recent technological advancements in data acquisition tools allowed life scientists to acquire multimodal data from different biological application domains. Categorized in three broad types (i.e. images, signals, and sequences), these data are huge in amount and complex in nature. Mining such enorm...
Autores principales: | Mahmud, Mufti, Kaiser, M. Shamim, McGinnity, T. Martin, Hussain, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783296/ https://www.ncbi.nlm.nih.gov/pubmed/33425045 http://dx.doi.org/10.1007/s12559-020-09773-x |
Ejemplares similares
-
Inverted bell-curve-based ensemble of deep learning models for detection of COVID-19 from chest X-rays
por: Paul, Ashis, et al.
Publicado: (2022) -
Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia
por: Noor, Manan Binth Taj, et al.
Publicado: (2020) -
ABOT: an open-source online benchmarking tool for machine learning-based artefact detection and removal methods from neuronal signals
por: Fabietti, Marcos, et al.
Publicado: (2022) -
Direct Ophthalmoscopy… Soon to be Forgotten?
por: Katherine, McGinnity, et al.
Publicado: (2019) -
An event based topic learning pipeline for neuroimaging literature mining
por: Chen, Lihong, et al.
Publicado: (2020)