Cargando…
Statistical Significance Filtering Overestimates Effects and Impedes Falsification: A Critique of Endsley (2019)
Whether in meta-analysis or single experiments, selecting results based on statistical significance leads to overestimated effect sizes, impeding falsification. We critique a quantitative synthesis that used significance to score and select previously published effects for situation awareness-perfor...
Autores principales: | Bakdash, Jonathan Z., Marusich, Laura R., Kenworthy, Jared B., Twedt, Elyssa, Zaroukian, Erin G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783317/ https://www.ncbi.nlm.nih.gov/pubmed/33414750 http://dx.doi.org/10.3389/fpsyg.2020.609647 |
Ejemplares similares
-
Left-truncated effects and overestimated meta-analytic means
por: Bakdash, Jonathan Z., et al.
Publicado: (2022) -
Falsification and consciousness
por: Kleiner, Johannes, et al.
Publicado: (2021) -
The scourge of vaccine falsification
por: Saliou, Pierre, et al.
Publicado: (2022) -
Quantum Epistemology and Falsification
por: D’Ariano, Giacomo Mauro
Publicado: (2022) -
How to Catch a Falsifier: Comparison of Statistical Detection Methods for Interviewer Falsification
por: Schwanhäuser, Silvia, et al.
Publicado: (2022)