Cargando…
Automated Extraction of Information From Texts of Scientific Publications: Insights Into HIV Treatment Strategies
Text analysis can help to identify named entities (NEs) of small molecules, proteins, and genes. Such data are very important for the analysis of molecular mechanisms of disease progression and development of new strategies for the treatment of various diseases and pathological conditions. The texts...
Autores principales: | Biziukova, Nadezhda, Tarasova, Olga, Ivanov, Sergey, Poroikov, Vladimir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783389/ https://www.ncbi.nlm.nih.gov/pubmed/33414815 http://dx.doi.org/10.3389/fgene.2020.618862 |
Ejemplares similares
-
Chemical named entity recognition in the texts of scientific publications using the naïve Bayes classifier approach
por: Tarasova, O. A., et al.
Publicado: (2022) -
A Computational Approach for the Prediction of HIV Resistance Based on Amino Acid and Nucleotide Descriptors
por: Tarasova, Olga, et al.
Publicado: (2018) -
A Computational Approach for the Prediction of Treatment History and the Effectiveness or Failure of Antiretroviral Therapy
por: Tarasova, Olga, et al.
Publicado: (2020) -
Identification of Molecular Mechanisms Involved in Viral Infection Progression Based on Text Mining: Case Study for HIV Infection
por: Tarasova, Olga, et al.
Publicado: (2023) -
Data and Text Mining Help Identify Key Proteins Involved in the Molecular Mechanisms Shared by SARS-CoV-2 and HIV-1
por: Tarasova, Olga, et al.
Publicado: (2020)