Cargando…
Fatty acid production of thraustochytrids from Saudi Arabian mangroves
This is the first report of thraustochytrids from Saudi Arabia. A total of 108 isolates of thraustochytrid were cultured from Syhat mangroves, Arabian Gulf, Saudi Arabia. Isolated thraustochytrids belonged to five genera: Aplanochytrium, Aurantiochytrium, Schizochytrium, Thraustochytrium and Ulkenia...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7783828/ https://www.ncbi.nlm.nih.gov/pubmed/33424376 http://dx.doi.org/10.1016/j.sjbs.2020.11.024 |
Sumario: | This is the first report of thraustochytrids from Saudi Arabia. A total of 108 isolates of thraustochytrid were cultured from Syhat mangroves, Arabian Gulf, Saudi Arabia. Isolated thraustochytrids belonged to five genera: Aplanochytrium, Aurantiochytrium, Schizochytrium, Thraustochytrium and Ulkenia. Cultured thraustochytrids isolated from decaying leaves of Avicennia marina (77 isolates), sediment (15), seawater (10) and decaying thalli of Sargassum (6). Of the 108 isolates, three strains (SY25, SY38 and SY52) were selected based on their high biomass productivity and high percentages of PUFAs. Phylogenetic analyses based on 18S rDNA placed the three strains within the Aurantiochytrium clade with high statistical support. Species of Aurantiochytrium formed six separate clades, the two strains (SY38 and SY52) formed a separate clade that is a sister clade to the one that contains the type species A. limacinum, while SY25 grouped with Aurantiochytrium sp. TA4, that is also isolated from mangroves in Iran, Arabian Gulf. The strains (SY38 and SY52) shared the phylogenetic placement, their morphology and fatty acid profile. The strain SY25 have different shape of sporangia that divide to give zoospores directly, sporogenous cells are surrounded by thick gelatinous sheath and produce high levels of Linoleic and Oleic essential unsaturated fatty acids. The three studied strain produced high levels of Palmitic acid (ranged between 31.1 and 65.3 % of total fatty acids) that can be further optimized for biofuel production. |
---|