Cargando…
Cortical surface registration using unsupervised learning
Non-rigid cortical registration is an important and challenging task due to the geometric complexity of the human cortex and the high degree of inter-subject variability. A conventional solution is to use a spherical representation of surface properties and perform registration by aligning cortical...
Autores principales: | Cheng, Jieyu, Dalca, Adrian V., Fischl, Bruce, Zöllei, Lilla |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784120/ https://www.ncbi.nlm.nih.gov/pubmed/32702486 http://dx.doi.org/10.1016/j.neuroimage.2020.117161 |
Ejemplares similares
-
Joint cortical registration of geometry and function using semi-supervised learning
por: Li, Jian, et al.
Publicado: (2023) -
Learning the Effect of Registration Hyperparameters with HyperMorph
por: Hoopes, Andrew, et al.
Publicado: (2022) -
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images
por: Hoffmann, Malte, et al.
Publicado: (2022) -
Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years
por: Zöllei, Lilla, et al.
Publicado: (2020) -
An Unsupervised Learning Approach to Discontinuity-Preserving Image Registration
por: Ng, Eric, et al.
Publicado: (2020)