Cargando…
scMC learns biological variation through the alignment of multiple single-cell genomics datasets
Distinguishing biological from technical variation is crucial when integrating and comparing single-cell genomics datasets across different experiments. Existing methods lack the capability in explicitly distinguishing these two variations, often leading to the removal of both variations. Here, we p...
Autores principales: | Zhang, Lihua, Nie, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784288/ https://www.ncbi.nlm.nih.gov/pubmed/33397454 http://dx.doi.org/10.1186/s13059-020-02238-2 |
Ejemplares similares
-
The effect of hybrid SCMC (BYOD) on foreign language anxiety and learning experience in comparison to pure SCMC and FTF communication
por: Liu, Xuecheng
Publicado: (2023) -
scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles
por: Jin, Suoqin, et al.
Publicado: (2020) -
scLM: Automatic Detection of Consensus Gene Clusters Across Multiple Single-cell Datasets
por: Song, Qianqian, et al.
Publicado: (2021) -
scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data
por: Johansen, Nelson, et al.
Publicado: (2019) -
CONFINED: distinguishing biological from technical sources of variation by leveraging multiple methylation datasets
por: Thompson, Mike, et al.
Publicado: (2019)