Cargando…

Characteristics of TGFBR1–EGFR–CTNNB1–CDH1 Signaling Axis in Wnt-Regulated Invasion and Migration in Lung Cancer

This study aimed to explore the characteristics of TGFBR1–epidermal growth factor receptor (EGFR)–CTNNB1–CDH1 axis in regulating the invasion and migration in lung cancer. Using the small interfering RNA technology, EGFR was silenced in H2170 and H1299 cells. Then, the colony formation, migration, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Rong, Zhang, Yusui, Ding, Yuan, Zhang, Shuai, Pan, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784602/
https://www.ncbi.nlm.nih.gov/pubmed/33231090
http://dx.doi.org/10.1177/0963689720969167
Descripción
Sumario:This study aimed to explore the characteristics of TGFBR1–epidermal growth factor receptor (EGFR)–CTNNB1–CDH1 axis in regulating the invasion and migration in lung cancer. Using the small interfering RNA technology, EGFR was silenced in H2170 and H1299 cells. Then, the colony formation, migration, and invasion abilities were detected using colony-forming assay and transwell assay. Moreover, the mRNA expression of smad2, smad3, CTNNB1, and CDH1, and the protein expression of TGFBR1, CDH1, and TCF were determined using the real-time polymerase chain reaction and western blotting. The results showed that silencing EGFR could significantly decrease the colony-forming ability in H2170 and H1299. Knocking down EGFR could significantly inhibit the invasion and migration ability of H2179 and H1299. Inhibiting the expression of EGFR could significantly decrease the expression of smad2, smad3, CDH1, and CTNNB1, with all P-values <0.05. In addition, silencing EGFR could markedly decrease the expression of TGFBR1 and CDH1 in H1299 and H2170, with all P-values <0.05. In conclusion, silencing EGFR could significantly regulate the progression of lung cancer via TGFBR1–EGFR–CTNNB1–CDH1 axis in Wnt signaling pathway.