Cargando…

Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I

[Image: see text] The respiratory complex I is a gigantic (1 MDa) redox-driven proton pump that reduces the ubiquinone pool and generates proton motive force to power ATP synthesis in mitochondria. Despite resolved molecular structures and biochemical characterization of the enzyme from multiple org...

Descripción completa

Detalles Bibliográficos
Autores principales: Röpke, Michael, Saura, Patricia, Riepl, Daniel, Pöverlein, Maximilian C., Kaila, Ville R. I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785131/
https://www.ncbi.nlm.nih.gov/pubmed/33325238
http://dx.doi.org/10.1021/jacs.0c09209
_version_ 1783632392796241920
author Röpke, Michael
Saura, Patricia
Riepl, Daniel
Pöverlein, Maximilian C.
Kaila, Ville R. I.
author_facet Röpke, Michael
Saura, Patricia
Riepl, Daniel
Pöverlein, Maximilian C.
Kaila, Ville R. I.
author_sort Röpke, Michael
collection PubMed
description [Image: see text] The respiratory complex I is a gigantic (1 MDa) redox-driven proton pump that reduces the ubiquinone pool and generates proton motive force to power ATP synthesis in mitochondria. Despite resolved molecular structures and biochemical characterization of the enzyme from multiple organisms, its long-range (∼300 Å) proton-coupled electron transfer (PCET) mechanism remains unsolved. We employ here microsecond molecular dynamics simulations to probe the dynamics of the mammalian complex I in combination with hybrid quantum/classical (QM/MM) free energy calculations to explore how proton pumping reactions are triggered within its 200 Å wide membrane domain. Our simulations predict extensive hydration dynamics of the antiporter-like subunits in complex I that enable lateral proton transfer reactions on a microsecond time scale. We further show how the coupling between conserved ion pairs and charged residues modulate the proton transfer dynamics, and how transmembrane helices and gating residues control the hydration process. Our findings suggest that the mammalian complex I pumps protons by tightly linked conformational and electrostatic coupling principles.
format Online
Article
Text
id pubmed-7785131
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-77851312021-01-06 Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I Röpke, Michael Saura, Patricia Riepl, Daniel Pöverlein, Maximilian C. Kaila, Ville R. I. J Am Chem Soc [Image: see text] The respiratory complex I is a gigantic (1 MDa) redox-driven proton pump that reduces the ubiquinone pool and generates proton motive force to power ATP synthesis in mitochondria. Despite resolved molecular structures and biochemical characterization of the enzyme from multiple organisms, its long-range (∼300 Å) proton-coupled electron transfer (PCET) mechanism remains unsolved. We employ here microsecond molecular dynamics simulations to probe the dynamics of the mammalian complex I in combination with hybrid quantum/classical (QM/MM) free energy calculations to explore how proton pumping reactions are triggered within its 200 Å wide membrane domain. Our simulations predict extensive hydration dynamics of the antiporter-like subunits in complex I that enable lateral proton transfer reactions on a microsecond time scale. We further show how the coupling between conserved ion pairs and charged residues modulate the proton transfer dynamics, and how transmembrane helices and gating residues control the hydration process. Our findings suggest that the mammalian complex I pumps protons by tightly linked conformational and electrostatic coupling principles. American Chemical Society 2020-12-16 2020-12-30 /pmc/articles/PMC7785131/ /pubmed/33325238 http://dx.doi.org/10.1021/jacs.0c09209 Text en © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Röpke, Michael
Saura, Patricia
Riepl, Daniel
Pöverlein, Maximilian C.
Kaila, Ville R. I.
Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I
title Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I
title_full Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I
title_fullStr Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I
title_full_unstemmed Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I
title_short Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I
title_sort functional water wires catalyze long-range proton pumping in the mammalian respiratory complex i
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785131/
https://www.ncbi.nlm.nih.gov/pubmed/33325238
http://dx.doi.org/10.1021/jacs.0c09209
work_keys_str_mv AT ropkemichael functionalwaterwirescatalyzelongrangeprotonpumpinginthemammalianrespiratorycomplexi
AT saurapatricia functionalwaterwirescatalyzelongrangeprotonpumpinginthemammalianrespiratorycomplexi
AT riepldaniel functionalwaterwirescatalyzelongrangeprotonpumpinginthemammalianrespiratorycomplexi
AT poverleinmaximilianc functionalwaterwirescatalyzelongrangeprotonpumpinginthemammalianrespiratorycomplexi
AT kailavilleri functionalwaterwirescatalyzelongrangeprotonpumpinginthemammalianrespiratorycomplexi