Cargando…

Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network

Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Fenyves, Bánk G., Szilágyi, Gábor S., Vassy, Zsolt, Sőti, Csaba, Csermely, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785220/
https://www.ncbi.nlm.nih.gov/pubmed/33347479
http://dx.doi.org/10.1371/journal.pcbi.1007974
_version_ 1783632396886736896
author Fenyves, Bánk G.
Szilágyi, Gábor S.
Vassy, Zsolt
Sőti, Csaba
Csermely, Peter
author_facet Fenyves, Bánk G.
Szilágyi, Gábor S.
Vassy, Zsolt
Sőti, Csaba
Csermely, Peter
author_sort Fenyves, Bánk G.
collection PubMed
description Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.
format Online
Article
Text
id pubmed-7785220
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-77852202021-01-13 Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network Fenyves, Bánk G. Szilágyi, Gábor S. Vassy, Zsolt Sőti, Csaba Csermely, Peter PLoS Comput Biol Research Article Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data. Public Library of Science 2020-12-21 /pmc/articles/PMC7785220/ /pubmed/33347479 http://dx.doi.org/10.1371/journal.pcbi.1007974 Text en © 2020 Fenyves et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Fenyves, Bánk G.
Szilágyi, Gábor S.
Vassy, Zsolt
Sőti, Csaba
Csermely, Peter
Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network
title Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network
title_full Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network
title_fullStr Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network
title_full_unstemmed Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network
title_short Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network
title_sort synaptic polarity and sign-balance prediction using gene expression data in the caenorhabditis elegans chemical synapse neuronal connectome network
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785220/
https://www.ncbi.nlm.nih.gov/pubmed/33347479
http://dx.doi.org/10.1371/journal.pcbi.1007974
work_keys_str_mv AT fenyvesbankg synapticpolarityandsignbalancepredictionusinggeneexpressiondatainthecaenorhabditiseleganschemicalsynapseneuronalconnectomenetwork
AT szilagyigabors synapticpolarityandsignbalancepredictionusinggeneexpressiondatainthecaenorhabditiseleganschemicalsynapseneuronalconnectomenetwork
AT vassyzsolt synapticpolarityandsignbalancepredictionusinggeneexpressiondatainthecaenorhabditiseleganschemicalsynapseneuronalconnectomenetwork
AT soticsaba synapticpolarityandsignbalancepredictionusinggeneexpressiondatainthecaenorhabditiseleganschemicalsynapseneuronalconnectomenetwork
AT csermelypeter synapticpolarityandsignbalancepredictionusinggeneexpressiondatainthecaenorhabditiseleganschemicalsynapseneuronalconnectomenetwork