Cargando…
Estimating individuals’ genetic and non-genetic effects underlying infectious disease transmission from temporal epidemic data
Individuals differ widely in their contribution to the spread of infection within and across populations. Three key epidemiological host traits affect infectious disease spread: susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection to others) and recoverabil...
Autores principales: | Pooley, Christopher M., Marion, Glenn, Bishop, Stephen C., Bailey, Richard I., Doeschl-Wilson, Andrea B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785229/ https://www.ncbi.nlm.nih.gov/pubmed/33347459 http://dx.doi.org/10.1371/journal.pcbi.1008447 |
Ejemplares similares
-
Optimal experimental designs for estimating genetic and non-genetic effects underlying infectious disease transmission
por: Pooley, Christopher, et al.
Publicado: (2022) -
Estimation of age-stratified contact rates during the COVID-19 pandemic using a novel inference algorithm
por: Pooley, Christopher M., et al.
Publicado: (2022) -
Novel methods for quantifying individual host response to infectious pathogens for genetic analyses
por: Doeschl-Wilson, Andrea B., et al.
Publicado: (2012) -
Exploring the assumptions underlying genetic variation in host nematode resistance (Open Access publication)
por: Doeschl-Wilson, Andrea Beate, et al.
Publicado: (2008) -
Posterior-based proposals for speeding up Markov chain Monte Carlo
por: Pooley, C. M., et al.
Publicado: (2019)