Cargando…

Lw-CNN-Based Myoelectric Signal Recognition and Real-Time Control of Robotic Arm for Upper-Limb Rehabilitation

Deep-learning models can realize the feature extraction and advanced abstraction of raw myoelectric signals without necessitating manual selection. Raw surface myoelectric signals are processed with a deep model in this study to investigate the feasibility of recognizing upper-limb motion intents an...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Benzhen, Ma, Yanli, Yang, Jingjing, Wang, Zhihui, Zhang, Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785339/
https://www.ncbi.nlm.nih.gov/pubmed/33456452
http://dx.doi.org/10.1155/2020/8846021
Descripción
Sumario:Deep-learning models can realize the feature extraction and advanced abstraction of raw myoelectric signals without necessitating manual selection. Raw surface myoelectric signals are processed with a deep model in this study to investigate the feasibility of recognizing upper-limb motion intents and real-time control of auxiliary equipment for upper-limb rehabilitation training. Surface myoelectric signals are collected on six motions of eight subjects' upper limbs. A light-weight convolutional neural network (Lw-CNN) and support vector machine (SVM) model are designed for myoelectric signal pattern recognition. The offline and online performance of the two models are then compared. The average accuracy is (90 ± 5)% for the Lw-CNN and (82.5 ± 3.5)% for the SVM in offline testing of all subjects, which prevails over (84 ± 6)% for the online Lw-CNN and (79 ± 4)% for SVM. The robotic arm control accuracy is (88.5 ± 5.5)%. Significance analysis shows no significant correlation (p = 0.056) among real-time control, offline testing, and online testing. The Lw-CNN model performs well in the recognition of upper-limb motion intents and can realize real-time control of a commercial robotic arm.